Changes in the central dopaminergic systems in the streptozotocin-induced diabetic rats

  • D. K. Lim
  • K. M. Lee
  • I. K. Ho
Research Articles


The behavioral response, dopamine metabolism, and characteristics of dopamine subtypes after developing the hyperglycemia were studied in the striata of rats. In animals developed hyperglycemia, the on-set and duration of cataleptic behavior responded to SCH 23390 injection was delayed and shortened, respectively. However, the cataleptic responses to spiperone occurred significantly earlier in on-set and prolonged in duration. Dopamine metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), were significantly reduced in the striata of hyperglycemic rats. However, level of DA was significantly increased. It is noted that the ratios of DOPAC and HVA to DA were decreased, suggesting decreased turnover of DA. The affinity of striatal D-1 receptors was significantly increased without changes in the number of binding sites, while the maximum binding number of D-2 receptors was significantly increased without affecting its affinity in the diabetic rats. These results indicate that the dopaminergic activity in the striata was altered in hyperglycemic rats. Furthermore, it suggests that the upregulation of dopamine receptors might be due to the decreased dopamine metabolism.

Key words

Hyperglycemia Catalepsy Dopamine metabolism D-1 and D-2 receptors 

References cited

  1. Barone, P., Tucci, I., Parashos, S. A. and Chase, T. N., Supersensitivity to a D-1 dopamine receptor agonist and subsensitivity to a D-2 receptor agonist following chronic D-1 receptor blockade.Eur. J. Pharmacol., 149, 225–232 (1988).PubMedCrossRefGoogle Scholar
  2. Bitar, M. S. and DeSouza, E. B., Diabetes-releated changes in brain beta adrenoreceptors in rats as assessed by quantitative autoradiography: Relationship to hypothalamic norepinephrine metabolism and pituitary-gonadal hormone secretion.J. Pharmacol. Exp. Ther., 254, 781–785 (1990).PubMedGoogle Scholar
  3. Bitar, M. S., Koulu, M., Rapoport, S. I. and Linnoila, M., Diabetes-induced alterations in brain monoamine metabolism in rats.J. Pharmacol. Exp. Ther., 236, 432–437 (1986).PubMedGoogle Scholar
  4. Brodde, O.-E. and Michel, M. C., Disease states can modify both receptor number and signal transduction pathways.Trends Pharmacol. Sci., 10, 383–384 (1989).PubMedCrossRefGoogle Scholar
  5. Carboni, E., Memo, M., Tanda, G. L., Carruba, M. O. and Spano, P. F., Effect of temperature and ionic environment on the specific binding of [3H]sulpiride to membranes from different rat brain regions.Neurochem. Int., 7, 279–284 (1985).CrossRefGoogle Scholar
  6. Carrier, O. and Aronstam, R. S., Increased muscarinic responsiveness and decreased muscarinic receptor content in ileal smooth muscle in diabetes.J. Pharmacol. Exp. Ther., 254, 445–449 (1990).PubMedGoogle Scholar
  7. Chu, P. C., Lin, M. T. and Leu, S. Y., Alterations in physiologic functions in brain monoamine content in streptozotocin-diabetic rats.Diabetes., 35, 481–485 (1986).PubMedCrossRefGoogle Scholar
  8. Consolo, S., Girotti, P., Russi, G. and Di Chiara, G., Endogenous dopamine facilitates striatalin vivo acetylcholine release by acting on D1 receptors localized in the striatum.J. Neurochem., 59, 1555–1557 (1992).PubMedCrossRefGoogle Scholar
  9. Costall, B. and Naylor, R. J., Neuroleptic and non-neuroleptic catalepsy.Arznein-Forsch., 23, 674–683. (1973).Google Scholar
  10. Dunstan, R., Broekkamp, C. L. and Lloyd, K. G., Involvement of caudate nucleus, amygdala or reticular formation in neuroleptic and narcotic catalepsy.Pharmacol. Biochem. Behav., 14, 169–174 (1981).PubMedCrossRefGoogle Scholar
  11. Emy, R. E., Berezo, M. W. and Perlman, R. L., Activation of tyrosine 3-monooxygenase in pheochromocytoma cells by adenosine.J. Biol. Chem., 256, 1335–1339 (1981).Google Scholar
  12. Glowinski, J. and Iversen, L. L., Regional studies of catecholamine in the rat brain-I. The disposition of3H-norepinephrine, 3H-dopamine and 3H-DOPA in various regions of the rat.J. Neurochem., 13, 655–669 (1966).PubMedCrossRefGoogle Scholar
  13. Hoffman, D. C. and Beninger, R. J., The D1 receptor antagonist SCH23390 reduces locomotor activity and rearing in rats.Pharmacol. Biochem. Behav., 22, 341–342 (1985).PubMedCrossRefGoogle Scholar
  14. Horwitz, J. and Perlman, R. L., Activation of tyrosine hydroxylase in the superior cervical ganglion by nicotinic and muscarinic agonists.J. Neurochem., 43, 546–552 (1984).PubMedCrossRefGoogle Scholar
  15. Hoskins, B., and Scott, J. M., Evidence for a direct action of insulin to increase renal reabsorption of calcium and for an irreversible defect in renal ability to conserve calcium due to prolonged absence of insulin.Diabetes., 33, 991–994 (1984).PubMedCrossRefGoogle Scholar
  16. Hyttel, J., SCH 23390-the first selective dopamine D-1 antagonist.Eur. J. Pharmacol., 91, 153–154 (1983).PubMedCrossRefGoogle Scholar
  17. Lozovsky, D., Saller, C. F. and Kopin, I., Dopamine receptor binding is increased in diabetic rats.Science, 214, 1031–1033 (1981).PubMedCrossRefGoogle Scholar
  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., Protein measurement with the Folin phenol reagent.J. Biol. Chem., 193, 265–275 (1951).PubMedGoogle Scholar
  19. Marshall, J. F., Friedman, M. I. and Heffner, T. G., Reduced anorexic and locomotor-stimulant action of D-amphetamine in alloxan-diabetic rats.Brain Res., 111, 428–432 (1976).PubMedCrossRefGoogle Scholar
  20. Mayer, G. S. and Shoup, R. E., Simultaneous multiple electrode liquid chromatographical assay for catecholamines, indoleamines and metabolites in brain tissue.J. Chromatography, 255, 533–544 (1983).CrossRefGoogle Scholar
  21. Meller, E., Kuga, S., Friedhoff, A. J. and Goldstein, M., Selective D2 dopamine receptor agonists prevent calepsy induced by SCH-23390, a selective D1 antagonist.Life Sci., 36, 1857–1864 (1985).PubMedCrossRefGoogle Scholar
  22. Munson, P. J. and Rodbard, D., A versatile computerized approach for the characterization of ligand binding systems.Anal. Biochem., 107, 220–239 (1980).PubMedCrossRefGoogle Scholar
  23. Porceddu, M. L., Giorgi, O., Ongini, E., Mele, S. and Biggio, G.,3H-23390 binding sites in the rat substantia nigra: Evidence for a presynaptic localization and innervation by dopamine.Life Sci., 39, 321–328 (1986).PubMedCrossRefGoogle Scholar
  24. Quimet, C. C., Miller, P. E., Hemmings, H. C., Walaas, S. I. and Greengard, P., DARPP-32, a dopamine- and adenosine 3,5-monophosphate-regulated phosphoprotein enriched in dopamine innervated brain regions.J. Neurosci., 4, 111–124 (1984).Google Scholar
  25. Robertson, G. S. and Robertson, H. A., D1 and D2 agonist synergism: seperate sites of action?Trends Pharmacol. Sci., 8, 295–299 (1987).CrossRefGoogle Scholar
  26. Ryall, R. W., Drugs used in schizophrenia. In Ryall, R. W. ed. Mechanisms of drug action on the nervous system. Cambridge Univ. Press, N.Y. 1989 pp. 171–192.Google Scholar
  27. Salkovic, M. and Lackovic, Z., Brain D1 dopamine receptor in alloxan-induced diabetes.Diabetes, 41, 1119–1121 (1992).PubMedCrossRefGoogle Scholar
  28. Saller, C. F., Dopaminergic activity is reduced in diabetic rats.Neurosci. Letter, 99, 301–306 (1984).CrossRefGoogle Scholar
  29. Saller, C. F. and Chiodo, L. A., Glucose suppresses basal firing and haloperidol-induced increases in the firing rate of central dopaminergic neurons.Science, 210, 1269–1271 (1980).PubMedCrossRefGoogle Scholar
  30. Saller, C. F. and Salama, A. I., D-1 and D-2 dopamine receptor blockade: Interactive effectsin vitro andin vivo.J. Pharmacol. Exp. Ther., 236, 714–720 (1986).PubMedGoogle Scholar
  31. Scatton, B., Worms, P., Lloyd, K. G. and Bartholini, G., Cortical modulation of striatal function.Brain Res., 232, 331–343 (1982).PubMedCrossRefGoogle Scholar
  32. Seeman, P., Brain dopamine receptors.Pharmacol. Rev., 32, 229–313 (1980).PubMedGoogle Scholar
  33. Shimomura, Y., Shimizu, H., Takahashi, M., Sato, N., Uehara, Y., Suwa, K., Kobayashi, I., Tadokoro, S. and Kobayashi, S., Changes in ambulatory activity and dopamine turnover in streptozotocin-induced diabetic rats.Endocrinol., 123, 2621–2625 (1988).Google Scholar
  34. Shimomura, Y., Shimizu, H., Takahashi, M., Uehara, Y., Kobayashi, I. and Kobayashi, S., Ambulatory activity and dopamine turnover in streptozotocin-induced rats.Exp. Clin. Endocrinol., 95, 385–388 (1990).PubMedCrossRefGoogle Scholar
  35. Stoof, J. C., Drukarch, B., De Boer, P., Westerink, B. H. C. and Groenewegen, H. J., Regulation of the activity of striatal cholinergic neurons by dopamine.Neuroscience, 47, 755–770 (1992).PubMedCrossRefGoogle Scholar
  36. Stoof, J. C. and Kebabian, J., Two dopamine receptors: Biochemistry, physiology and pharmacology.Life Sci., 35, 2281–2296 (1984).PubMedCrossRefGoogle Scholar
  37. Watkins, J. B. and Sherman, S. E., Long-term diabetes alters the hepatobiliary clearance of acetaminophen, bilirubin and digoxin.J. Pharmacol. Exp. Ther., 260, 1337–1343 (1992).PubMedGoogle Scholar
  38. Westerink, N. H. C. and Korf, J., Turnover of acid dopamine metabolites in striatal and mesolimbic tissue of the rat brain.Eur. J. Pharmacol., 37, 249–255 (1976).PubMedCrossRefGoogle Scholar
  39. Zukins, S. R., Young, A. E. and Snyder, S. H., Gamma-aminobutyric acid binding to receptro sites in rat central nerve system.Proc. Natl. Acad. Sci. U.S.A. 71, 4802–4807 (1974).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 1994

Authors and Affiliations

  • D. K. Lim
    • 2
  • K. M. Lee
    • 2
  • I. K. Ho
    • 1
  1. 1.Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonU.S.A.
  2. 2.College of PharmacyChonnam National UniversityKwang-JuKorea

Personalised recommendations