Uncertainty calculation in life cycle assessments

A combined model of simulation and approximation
  • Andreas Ciroth
  • Günter Fleischer
  • Jörg Steinbach
LCA Methodology: Uncertainties in LCA

Abstract

Goal and Background

Uncertainty is commonly not taken into account in LCA studies, which downgrades their usability for decision support. One often stated reason is a lack of method. The aim of this paper is to develop a method for calculating the uncertainty propagation in LCAs in a fast and reliable manner.

Approach

The method is developed in a model that reflects the calculation of an LCA. For calculating the uncertainty, the model combines approximation formulas and Monte Carlo Simulation. It is based on virtual data that distinguishes true values and random errors or uncertainty, and that hence allows one to compare the performance of error propagation formulas and simulation results. The model is developed for a linear chain of processes, but extensions for covering also branched and looped product systems are made and described.

Results

The paper proposes a combined use of approximation formulas and Monte Carlo simulation for calculating uncertainty in LCAs, developed primarily for the sequential approach. During the calculation, a parameter observation controls the performance of the approximation formulas. Quantitative threshold values are given in the paper. The combination thus transcends drawbacks of simulation and approximation.

Conclusions and Outlook

The uncertainty question is a true jigsaw puzzle for LCAs and the method presented in this paper may serve as one piece in solving it. It may thus foster a sound use of uncertainty assessment in LCAs. Analysing a proper management of the input uncertainty, taking into account suitable sampling and estimation techniques; using the approach for real case studies, implementing it in LCA software for automatically applying the proposed combined uncertainty model and, on the other hand, investigating about how people do decide, and should decide, when their decision relies on explicitly uncertain LCA outcomes-these all are neighbouring puzzle pieces inviting to further work.

Keywords

Approximation formula error propagation life cycle inventory (LCI) life cycle impact assessment (LCIA) models Monte Carlo Simulation quantitative thresholds uncertainties 

References

  1. [1]
    Kahnemann D, Slovic P, Tversky A (Eds) (1982): Judgement under Uncertainty, Heuristics and Biases. Cambridge University PressGoogle Scholar
  2. [2]
    Ciroth A (2003): Uncertainty calculation for LCI data: Reasons for, against, and an efficient and flexible approach for doing it. Presentation, International Workshop on Quality of LCI Data, 20–21 October 2003, Forschungszentrum Karlsruhe http://www.lci-network.de/cms/content/cache/offonce/pid/468Google Scholar
  3. [3]
    http://www.spold.org/Google Scholar
  4. [4]
    http://www.globalspine.com/LCA/Google Scholar
  5. [5]
    Weidema B, Wesnaes MS (1996): Data quality management for life cycle inventories-An example for using data quality indicators. J Cleaner Prod 4 (3-4) 167–174CrossRefGoogle Scholar
  6. [6]
    Huijbregts MAJ, Norris G, Bretz R, Ciroth A, Maurice B, von Bahr B, Weidema B, de Beaufort ASH (2001): Framework for Modelling Data Uncertainty in Life Cycle Inventories. Int J LCA 6 (3) 127–131CrossRefGoogle Scholar
  7. [7]
    Huijbregts MAJ (2001): Uncertainty and variability in environmental life-cycle assessment. Academisch Proefschrift, Univ. van Amsterdam, AmsterdamGoogle Scholar
  8. [8]
    Ciroth A (2000): A new model for the propagation of errors in LCA, shown in a case study. Platform Presentation, 8th SETAC case study symposium, BrusselsGoogle Scholar
  9. [9]
    Canter KG, Kennedy DJ, Montgomery DC, Keats JB, Carlyle WM (2002): Screening Stochastic Life Cycle Assessment Inventory Models. Int J LCA 7 (1) 18–26CrossRefGoogle Scholar
  10. [10]
    Le Téno JF (1999): Visual Data Analysis and Decision Support Models for Non-Deterministic LCA. Int J LCA 4 (1) 41–47CrossRefGoogle Scholar
  11. [11]
    Pohl Chr, Ros M (1996): Sind Ökobilanzen zu präzise? In: Intelligente Methoden zur Verarbeitung von Umweltinformation. 2. Bremer KI-Pfingstworkshop (Tagungsband), metropolis, Marburg, pp 121–136Google Scholar
  12. [12]
    Heijungs R (1996): Identification of key issues for further investigation in improving the reliability of life-cycle assessments. J Cleaner Prod 4 (3-4) 159–166CrossRefGoogle Scholar
  13. [13]
    Sangwon Suh (2003): personal communication, 11 June 03Google Scholar
  14. [14]
    Ecospold data format http://www.ecoinvent.org/en/pdf/Documentation EcoSpoldl,2.pdfGoogle Scholar
  15. [15]
    McCleese D, LaPuma P (2002): Using Monte Carlo Simulation in Life Cycle Assessment for Electric and Internal Combustion Vehicles. Int J LCA 7 (4) 230–236CrossRefGoogle Scholar
  16. [16]
    Ciroth A (2001): Fehlerrechnung in Ökobilanzen. Dissertation TU Berlin 2001 http://edocs.tu-berlin.de/diss/2001/ciroth andreas.htmGoogle Scholar
  17. [17]
    Bevington R, Robinson DK (1992): Data Reduction and Error Analysis for the Physical Sciences. WCB/McGrawHill, BostonGoogle Scholar
  18. [18]
    Bacchini P, Bader HP (1996): Regionaler Stoffhaushalt. Spektrum Akademischer Verlag, Heidelberg Berlin OxfordGoogle Scholar
  19. [19]
    Wolf H (1979): Ausgleichungsrechnung H. Ferd. Dummlers Verlag, BonnGoogle Scholar
  20. [20]
    Höpcke W (1980): Fehlerlehre und Ausgleichsrechnung, Walter de Gruyter, Berlin New YorkGoogle Scholar
  21. [21]
    Vose D (1996): Quantitative Risk Analysis: A Guide to Monte Carlo Simulation Modelling. John Wiley & Sons, Chichester, New York, Brisbane, Toronto, SingaporeGoogle Scholar
  22. [22]
    Fleischer G, Schmidt WP (1995): Life cycle assessment. In: Ullmann’s Encyclopedia of Industrial Chemistry, 5th Ed, Vol B8, Weinheim: VCH Verlagsgesellschaft, pp 585–600Google Scholar
  23. [23]
    Schmidt M (1996): Die Modellierung von Stoffrekursionen in Ökobilanzen. In: [24, pp 97–117]Google Scholar
  24. [24]
    Schmidt M, Schorb A (1996): Stoffstromanalysen in Ökobilanzen und Öko-Audits. Springer Verlag, Berlin HeidelbergGoogle Scholar
  25. [25]
    Moller A, Rolf A, Page B, Wohlgemuth V (2001): Foundations and Applications of Computer Based Material Flow Networks for Environmental Management. In: Rautenstrauch C Patig S (Eds) Environmental Information Systems in Industry und Public Administration. Hershey, PA USA, pp 379–396Google Scholar
  26. [26]
    Ciroth A (1998): Beispielhafte Anwendung der Iterativen Screening-Ökobilanz. Master thesis, Fachgebiet Abfallvermeidung der TU Berlin, BerlinGoogle Scholar
  27. [27]
    Heijungs R, Suh S (2002): The computational Structure of Life Cycle Assessment. Kluwer Academic Publishers, DordrechtGoogle Scholar
  28. [28]
    Hertwich EG, Hammitt JK (2001): A Decision-Analytic Framework for Impact Assessment, Part 2: Midpoints, Endpoints, and Criteria for Method Development. Int J LCA 6 (5) 265–272CrossRefGoogle Scholar
  29. [29]
    Matlab Function Reference; Function ‘inv’, Version 6.5, Release 13, 2002Google Scholar
  30. [30]
    Golub G, Ortega JM (1993): Scientific Computing. Academic PressGoogle Scholar
  31. [31]
    Ciroth A (2000): Einfluß der Reihenfolge von Bezugsszenariorechnung, Normierung und Charakterisierung auf das Ergebnis der LCA. In: Umweltschutz im neuen Jahrhundert, Festschrift anlässlich des 60. Geburtstages von Univ.-Prof. Dr.-Ing. Günter Fleischer, TK Verlag, Neuruppin, pp 95–104Google Scholar
  32. [32]
    Ross St, Evans D, Webber M (2002): How LCA Studies Deal with Uncertainty. Int J LCA 7 (1) 47–52CrossRefGoogle Scholar
  33. [33]
    Plinke E, Schonert M, Meckel H, Detzel A, Giegrich J, Fehrenbach H, Ostermayer A, Schorb A, Heinisch J, Luxenhofer K, Schmitz St, Umwelt-bundesamt (Hrsg) (2000): Ökobilanz für Getränkeverpackungen II, Hauptteil. UBA Texte 37/00, Berlin 2000, p 133: ‘Eine spezielle Methode zur Fehlerabschätzung in Ökobilanzen wurde bislang nicht entwickelt’ (a specific method for estimating uncertainties in LCAs is not developed yet)Google Scholar
  34. [34]
    GaBi 4 Reference manual, 2003-01-29Google Scholar
  35. [35]
    Björklund AE (2002): Survey of Approaches to Improve Reliability in LCA. Int J LCA 7 (2) 62–72CrossRefGoogle Scholar
  36. [36]
    Tukey JW (1977): Exploratory Data Analysis, Addison Wesley, ReadingGoogle Scholar
  37. [38]
    Ackermann R (1997): Ableitung von allgemein nutzbaren Sachbilanz-modulen-Untersuchungen am Beispiel der Aufbereitung von Altkunst-stoffen aus dem Dualen System. Dissertation TU BerlinGoogle Scholar
  38. [39]
    Omlin M, Reichert P (1999): A comparison of techniques for the model prediction uncertainty. Ecological Modelling 115, 45–59CrossRefGoogle Scholar
  39. [40]
    Björk A (1996) Numerical Methods for Least Squares Problems. SIAM, Society of Industrial and Applied Mathematics, PhiladelphiaGoogle Scholar
  40. [41]
    Hartung J, Elpelt B (1989): Multivariate Statistik. Oldenbourg, MünchenGoogle Scholar
  41. [42]
    Laux H (1998): Entscheidungstheorie. Springer Verlag, BerlinGoogle Scholar
  42. [43]
    Kammen DM, Hassenzahl DM (1999): Should We Risk It? Exploring Environmental, Health and Technology Problem Solving, Princeton University Press, Princeton NJGoogle Scholar
  43. [44]
    Morgan MG, Henrion M (1990): Uncertainty-A guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge University Press, NYGoogle Scholar

Copyright information

© Ecomed Publishers 2004

Authors and Affiliations

  • Andreas Ciroth
    • 1
  • Günter Fleischer
    • 2
  • Jörg Steinbach
    • 3
  1. 1.GreenDelta TC GmbHBerlinGermany
  2. 2.TU Berlin, Institute of Environmental TechnologyBerlinGermany
  3. 3.TU Berlin, Institute of Process and Plant Technology (IPAT)BerlinGermany

Personalised recommendations