IMPACT 2002+: A new life cycle impact assessment methodology

  • Olivier Jolliet
  • Manuele Margni
  • Raphaël Charles
  • Sébastien Humbert
  • Jérôme Payet
  • Gerald Rebitzer
  • Ralph Rosenbaum
Presenting a New Method

Abstract

The new IMPACT 2002+ life cycle impact assessment methodology proposes a feasible implementation of a combined midpoint/damage approach, linking all types of life cycle inventory results (elementary flows and other interventions) via 14 midpoint categories to four damage categories. For IMPACT 2002+, new concepts and methods have been developed, especially for the comparative assessment of human toxicity and ecotoxicity. Human Damage Factors are calculated for carcinogens and non-carcinogens, employing intake fractions, best estimates of dose-response slope factors, as well as severities. The transfer of contaminants into the human food is no more based on consumption surveys, but accounts for agricultural and livestock production levels. Indoor and outdoor air emissions can be compared and the intermittent character of rainfall is considered. Both human toxicity and ecotoxicity effect factors are based on mean responses rather than on conservative assumptions. Other midpoint categories are adapted from existing characterizing methods (Eco-indicator 99 and CML 2002). All midpoint scores are expressed in units of a reference substance and related to the four damage categories human health, ecosystem quality, climate change, and resources. Normalization can be performed either at midpoint or at damage level. The IMPACT 2002+ method presently provides characterization factors for almost 1500 different LCI-results, which can be downloaded at http://www.epfl.ch/impact

Keywords

Ecotoxicity human toxicity IMPACT 2002+ life cycle impact assessment (LCIA) midpoint/damage approach 

References

  1. Barroin G (2003): Phosphore, Azote et Prolifération des Végétaux Aquatiques. Courrier de l’Environnement de 1’INRA; no. 48, 13–25Google Scholar
  2. Bennett DH, Margni M, McKone TE, Jolliet O (2002b): Intake Fraction for Multimedia Pollutants: A Tool for Life Cycle Analysis and Comparative Risk Assessment. Risk Analysis 22, 903–916CrossRefGoogle Scholar
  3. Bennett DH, McKone TE, Evans JS, Nazaroff WW, Margni MD, Jolliet O, Smith KR (2002a): Defining Intake Fraction. Environ Sci Technol 36, 207A-211ACrossRefGoogle Scholar
  4. BUWAL (1999): Ökologische Bewertung mit Hilfe der Grauen Energie. Schriftenreihe Umwelt, Ökobilanzen, Vol. 307, Bern (CH)Google Scholar
  5. Crettaz P, Pennington D, Rhomberg L, Brand B, Jolliet O (2002): Assessing Human Health Response in Life Cycle Assessment Using ED 10s and DALYs: Part 1-Cancer Effects. Risk Analysis 22, 931–946CrossRefGoogle Scholar
  6. Frischknecht et al. (2003): ecoinvent Database, http://www.ecoinvent.ch/Google Scholar
  7. Goedkoop M, Spriensma R (2000): The Eco-indicator 99: A Damage Oriented Method for Life Cycle Assessment, Methodology Report, second edition. Pré Consultants, Amersfoort (NL), NetherlandsGoogle Scholar
  8. Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA, de Bruijn H, van Duin R, Huijbregts MAJ (2002): Life Cycle Assessment: An Operational Guide to the ISO Standards. Kluwer Academic Publishers, Dordrecht (NL)Google Scholar
  9. Hauschild M, Wenzel H (1998): Environmental Assessment of Products-Vol. 2: Scientific Background, Chapman & Hall, London (UK)Google Scholar
  10. Heijungs R, Guinée JB, Huppes G, Lankreijer RM, Udo de Haes HA, Wegener Sleeswijk A, Ansems AMM, Eggels PG, van Duin R, Goede HP (1992): Environmental Life Cycle Assessment of Products. Centre of Environmental Science (CML), Leiden (NL)Google Scholar
  11. IPCC (2001): Climate change 2001: The Scientific Basis. Intergovernmental Panel on Climate Change (IPCC), http://www.grida.no/climate/ipcc tar/. 385–391Google Scholar
  12. Jolliet O (1994): Critical Surface-Time: An Evaluation Method for Life Cycle Assessment. In: Udo de Haes HA et al. (Ed.): Integrating Impact Assessment into LCA. SETAC Press, 133–142Google Scholar
  13. Jolliet O, Brent A, Goedkoop M, Itsubo N, Mueller-Wenk R, Peña C, Schenk R, Stewart M, Weidema B (2003a): LCIA Definition Study of the SETAC-UNEP Life Cycle Initiative. UNEP, http://www.uneptie.org/pc/sustain/lcinitiative/Google Scholar
  14. Jolliet O, Crettaz P (1997): Critical Surface-Time 95, a Life Cycle Impact Assessment Methodology, including Exposure and Fate, EPFL (CH)Google Scholar
  15. Jolliet O, Pennington D, Amman C, Pelichet T, Margni M, Crettaz P (2003b): Comparative Assessment of the Toxic Impact of Metals on Humans within IMPACT 2002. In: Dubreuil A (Ed.): Life Cycle Assessment of Metals-Issues and Research Directions, SETAC Press, ISBN 1-880611-62-7Google Scholar
  16. Murray C, Lopez A (1996): The Global Burden of Disease, a Comprehensive Assessment of Mortality and Disability from Diseases, Injuries, and Risk Factors in 1990 and Projected to 2020. Global Burden of Disease and Injury Series, Vol.1 & 2; Harvard School of Public Health, World Health Organization and World BankGoogle Scholar
  17. Payet J (2002): Developpement de la Méthode AMI. ADEME Report, Agence de l’Environnement et de la Maîtrise de l’Energie; Paris (F)Google Scholar
  18. Payet J, Jolliet O (2003): Comparative Assessment of the Toxic Impact of Metals on Aquatic Ecosystems: the AMI Method. In: Dubreuil A (Ed.): Life Cycle Assessment of Metals-Issues and Research Directions, SETAC Press, ISBN 1-880611-62-7Google Scholar
  19. Payet J, Pennington D, Hauschild M., Jolliet O (2003): Comparative Assessment of Toxic Impacts on Aquatic Ecosystems: The AMI method (Assessment of the Mean Impact). Submitted to Environ Toxicol ChemGoogle Scholar
  20. Pennington D, Amman C, Pelichet T, Margni M, Jolliet O (2003b): Spatial Multimedia Chemical Fate and Human Exposure Model for Western Europe. Submitted to Environ Sci TechnolGoogle Scholar
  21. Pennington D, Crettaz P, Tauxe A, Rhomberg L, Brand B, Jolliet O (2002): Assessing Human Health Response in Life Cycle Assessment Using ED 10s and DALYs: Part 2-Noncancer Effects. Risk Analysis 22, 947–963CrossRefGoogle Scholar
  22. Pennington D, Margni M, Payet J, Charles R, Jolliet O (2003a): Estimating Cumulative Toxicological Risks and Potential Impacts for Human Health and Ecosystems in LCA. Submitted to Environ Toxicol ChemGoogle Scholar
  23. Steen B (1999): A systematic Approach to Environmental Priority Strategies in Product Development (EPS). 2000-General System Characteristics & 2000-Models and Data. Chalmers, CPM report: 1999, 4 and 5, http://eps.esa.chalmers.se/download.htmGoogle Scholar

Copyright information

© Ecomed Publishers 2002

Authors and Affiliations

  • Olivier Jolliet
    • 1
  • Manuele Margni
    • 1
  • Raphaël Charles
    • 1
  • Sébastien Humbert
    • 1
  • Jérôme Payet
    • 1
  • Gerald Rebitzer
    • 1
  • Ralph Rosenbaum
    • 1
  1. 1.Industrial Ecology & Life Cycle Systems Group, GECOSSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations