Advertisement

Archives of Pharmacal Research

, Volume 28, Issue 11, pp 1293–1301 | Cite as

Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2)in vitro

  • Su -Yun Lyu
  • Jee -Young Rhim
  • Won -Bong Park
Article

Abstract

Flavonoids, a group of low molecular weight phenylbenzopyrones, have various pharmacological properties including antioxidant, anticancer, bactericidal, and anti-inflammatory. We carried out anti-herpetic assays on 18 flavonoids in five classes and a virus-induced cytopathic effect (CPE) inhibitory assay, plaque reduction assay, and yield reduction assay were performed. When flavonoids were applied at various concentrations to Vero cells infected by HSV-1 and 2, most of the flavonoids showed inhibitory effects on virus-induced CPE. Among the flavonoids, EC, ECG (flavanols), genistein (isoflavone), naringenin (flavanone), and quercetin (flavonol) showed a high level of CPE inhibitory activity. The antiviral activity of flavonoids were also examined by a plaque reduction assay. EC, ECG., galangin, and kaempferol showed a strong antiviral activity, and catechin, EGC, EGCG., naringenin, chrysin, baicalin, fisetin, myricetin, quercetin, and genistein showed moderate inhibitory effects against HSV-1. In these experiments, flavanols and flavonols appeared to be more active than flavones. Furthermore, treatment of Vero cells with ECG and galangin (which previously showed strong antiviral activities) before virus adsorption led to a slight enhancement of inhibition as determined by a yield reduction assay, indicating that an intracellular effect may also be involved.

Key words

Flavonoids Herpes simplex virus (HSV) Cytopathic effect (CPE)-inhibitory assay Selectivity index (SI) Plaque reduction assay Yield reduction assay Vero cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Betancur-Galvis, L., Zuluaga, C., Arno, M., Gonzalez, M. A., and Zaragoza, R. J., Cytotoxic effect (on tumor cells) andin vitro antiviral activity againstherpes simplex virus of synthetic spongiane diterpenes.J. Nat. Prod, 65, 189–192 (2002).PubMedCrossRefGoogle Scholar
  2. Bourne, N., Stanberry, L. R., Kern, E. R., Holan, G., Matthews, B., and Bernstein, D. I., Dendrimers, a new class of candidate topical microbicides with activity againstHerpes Simplex virus infection.Antimicrob. Agents C.hemother., 44, 2471–2474 (2000).CrossRefGoogle Scholar
  3. Charles, E. I., Weimin, X., Raju, P., and Richard, K., Retinoic acid reduces the yield of herpes simplex virus in Vero cells and alters the N-glycosylation of viral envelope proteins.Antiviral Res., 47, 29–40 (2000).CrossRefGoogle Scholar
  4. Dargan, D. J. and Dargan, H., S. -S. J., The antiviral activity against Herpes simplex virus of the triterpenoid compounds carbenoxolone sodium and cicloxolone sodium.J. Antimicrob. Chemother, 18, 185–200 (1986).PubMedCrossRefGoogle Scholar
  5. Felser, J., Kichington, P. R., Inchauspe, G., Straus, S. E., and Ostrove, J. M., Cell line containing varicella-zoster virus open reading frame 62 and expressing the ’IE’ 175 protein complement ICP4 mutants of herpes simplex virus type 1.J. Virol., 62, 2076–2082 (1988).PubMedGoogle Scholar
  6. Freshney, R. I., Culture of animal cells, a manual of basic technique, 3rd ed.Wiley-liss Inc, New York, pp. 331–332, (1994).Google Scholar
  7. Gius, D. and Laimins, L. A., Activation of human papillomavirus type 18 gene expression by herpes simplex virus type 1 viral transactivators and phorbol ester.J. Virol., 63, 555–563 (1989).PubMedGoogle Scholar
  8. Harbome, J. B., The Flavonoids. Advances in Research since 1986.Chapman and Hall, London, pp. 441–473, (1994).Google Scholar
  9. Havsteen, B. H., The biochemistry and medical significance of the flavonoids.Pharmacol. Ther., 96, 67–202 (2002).PubMedCrossRefGoogle Scholar
  10. Hook, E. W. I., C.annon, R. O., and Nahmias, A. J., Herpes simplex virus infection as a risk factor for human immunodeficiency virus infection in hetera sexuals.J. Infect. Dis., 165, 251–255 (1992).PubMedGoogle Scholar
  11. Hudson, J. Antiviral compounds from plants.CRC Press, Florida, pp. 119–131, (1990).Google Scholar
  12. Kaul, T. N., Middleton, E., and Ogra, P. L, Antiviral effect of flavonoids on human viruses.J. Med. Virol., 15, 71–79 (1985).PubMedCrossRefGoogle Scholar
  13. Lapucci, A., Macchia, M., and Parkin, A., Antiherpes virus agents: a review.Farmaco., 48, 871–895 (1993).PubMedGoogle Scholar
  14. Manthey, J. A., Grohmann, K., and Guthrie, N., Biological properties of citrus flavonoids pertaining to cancer and inflammation.Med. Chem., 8, 135–153 (2001).Google Scholar
  15. Middleton Jr., E., Kandaswami, C., and Theoharides, T. C., The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer.Curr. Med. Chem., 8, 135–153 (2001).Google Scholar
  16. Mucsi, I., Beladi, I., Pusztai, R., Bakay, M., and Gabor, M., Proceedings5th Hungarian bioflavonoids symposium.In Farkas, L., Gabor, M., and Kallay, F. (Eds.).Elsevier, Amsterdam, pp. 401–409, (1977).Google Scholar
  17. Mucsi, I. and Pragai, B. M., Inhibition of virus multiplication and alteration of cyclic AMP level in cell cultures by flavonoids.Experientia, 41, 930 (1985).PubMedCrossRefGoogle Scholar
  18. Ostrove, J. M., Leonard, J., Weck, E., Radson, A. B., and Gendelman, H. E., Activation of the human immunodeficiency virus by herpes simplex virus type 1.J. Virol., 61, 3726–3732 (1987).PubMedGoogle Scholar
  19. Park, N. H., Park, J., Min, M., and Cherrick, H. M., Combined synergistic antiherpetic effect of acyclovir and Chlorhexidinein vitro.Oral Surg. Oral Med. Oral Pathol., 71, 193–196 (1991).PubMedCrossRefGoogle Scholar
  20. Sarisky, R. T., C.rosson, P., Cano, R., Quail, M. R., Nguyen, T. T., Wittrock, R. J., Bacon, T. H., Sacks, S. L., Caspers-Velu, L., Hodinka, R. L., and Leary, J. J., Comparison of methods for identifying resistantherpes simplex virus and measuring antiviral susceptibility.J. Clin. Virol., 23, 191–200 (2002).PubMedCrossRefGoogle Scholar
  21. Selway, J. W. T., Plant flavonoids in biology and medicine. Biochemical, pharmacological, and structure-activity relation ships.In Cody, V., Middleton, E., and Arborne, J. B.(Eds.).Prog. Clin. Biol. Res. A. R. Liss, New York, pp. 521–536, (1986).Google Scholar
  22. Serkedjieva, J. and Ivancheva, S., Antiherpes virus activity of extracts from the medicinal plantGeranium sanguineum L.J. Ethnopharmacol., 64, 59–68 (1999).PubMedCrossRefGoogle Scholar
  23. Shen, S., Lee, W. R., Lin, H. Y., Huang, H. C., Ko, C. H., Yang, L. L., and Chen, Y. C.,In vitro andin vivo inhibitory activities of rutin, wogonin, and quercetin on lipopolysac- charide-induced nitric oxide and prostaglandin E2 production.Eur. J. Pharmacol., 446, 187–194 (2002).PubMedCrossRefGoogle Scholar
  24. Tsuchiya, Y., Shimizu, M., Hiyama, Y., Itoh, K., Hashimoto, Y., Nakayama, M., Horie, T., and Morita, N., Antiviral activity of natural occurring flavonoidsin vitro.Chem. Pharm. Bull. (Tokyo), 33, 3881–3886 (1985).Google Scholar
  25. Vlietinck, A. J., Vanden Berghe, D. A., and Haemers, A., Plant flavonoids in biology and medicine. Biochemical, pharmacological, and structure-activity relationships.In Cody, V., Middleton, E., and Harborne, J. (Eds.).Prog. Clin. Biol. Res. A. R. Liss, New York, pp. 283–299, (1986).Google Scholar
  26. Vrijsen, R., Everaert, L., and Boeye, A., Antiviral activity of flavones and potentiation by ascorbate.J. Gen. Virol., 69, 1749–1751 (1988).PubMedCrossRefGoogle Scholar
  27. Whitley, R. J., Herpes simplex viruses. Fields, B. N., and Knipe, D. M. (Eds.),In Fields Virology, 4th ed. Raven Press, New York, pp. 2461–2509, (2001).Google Scholar
  28. Wleklik, M., Luczak, M., Panasiak, W., Kobus, M., and Lammer-Zarawska, E., Structural basis for antiviral activity of flavonoids- naturally occurring compounds.Acta Virol., 32, 522–525 (1988).PubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2005

Authors and Affiliations

  • Su -Yun Lyu
    • 1
  • Jee -Young Rhim
    • 2
  • Won -Bong Park
    • 2
  1. 1.Immune Modulation Research Group, The School of PharmacyUniversity of NottinghamUK
  2. 2.College of Natural SciencesSeoul Women’s UniversitySeoulKorea

Personalised recommendations