Archives of Pharmacal Research

, Volume 28, Issue 3, pp 305–310 | Cite as

Agastache rugosa leaf extract inhibits the iNOS expression in ROS 17/2.8 cells activated with TNF-α and IL-1β

  • Hwa Min Oh
  • Young Jin Kang
  • Sun Hee Kim
  • Young Soo Lee
  • Min Kyu Park
  • Ja Myung Heo
  • Jin ji Sun
  • Hyo Jung Kim
  • Eun Sil Kang
  • Hye Jung Kim
  • Han Geuk Seo
  • Jae Heun Lee
  • Hye Sook Yun-Choi
  • Ki Churl Chang
Drug development

Abstract

It has been suggested that nitric oxide (NO) derived from inducible nitric oxide synthase (iNOS) may act as a mediator of cytokine-induced effects on bone turn-over. NO is also recognized as an important factor in bone remodeling, i.e., participating in osteoblast apoptosis in an arthritic joint. The components ofAgastache rugosa are known to have many pharmacological activities. In the present study, we investigated the effects of Agastache rugosa leaf extract (ELAR) on NO production and the iNOS expression in ROS 17/2.8 cells activated by a mixture of inflammatory cytokines including TNF-α and lL-1². A preincubation with ELAR significantly and concentration-dependently reduced the expression of iNOS protein in ROS 17/2.8 cells activated with the cytokine mixture. Consequently, the NO production was also significantly reduced by ELAR with an IC50 of 0.75 mg/mL The inhibitory mechanism of iNOS induction by ELAR prevented the activation and translocation of NF-κB (p65) to the nucleus from the cytosol fraction. Furthermore, ELAR concentration-dependently reduced the cellular toxicity induced by sodium nitroprusside, an NO-donor. These results suggest that ELAR may be beneficial in NO-mediated inflammatory conditions such as osteoporosis.

Key words

Nitric oxide Osteoarthritis Bone turn-over Osteoblast Agastache rugosa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armour, K. J., Armour, K. E., VanT Hof, R. J., Reid, D. M., Wei, X. Q., Liew, F. Y., and Ralston, S. H., Activation of the inducible nitric oxide synthase pathway contributes to inflammation induced osteoporosis by suppressing bone formation and causing osteoblast apoptosis.Arthritis Rheum., 44, 2790–2796 (2001).PubMedCrossRefGoogle Scholar
  2. Armour, K. E., VanT Hof, R. J., Grabowski, P. S., Reid, D. H., and Ralston, S. H., Evidence for a pathogenic role of nitric oxide in inflammation-induced osteoblast.J. Bone Miner. Res., 14, 2137–2142 (1999).PubMedCrossRefGoogle Scholar
  3. Bertolini, D. R., Nedwin, G. E., Bringman, T. S., Smith, D. D., and Mundy, G. R., Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors.Nature, 319, 6–8 (1986).CrossRefGoogle Scholar
  4. Boileau, C., Martel-Pelletier, J., Moldovan, F., Jouzeau, J. Y., Netter, R., Manning, P. T., and Pelletier, J. P., Thein situ up- regulation of chondrocyte interleukin-1-converting enzyme and interleukin-18 levels in experimental osteoarthritis is mediated by nitric oxide.Arthritis Rheum., 46, 2637–2647 (2002).PubMedCrossRefGoogle Scholar
  5. Chae, H. J., Chae, S. W., Kang, J. S., Bang, B. G., Cho, S. B., Park, R. K., So, H. S., Kim, Y. K., Kim, H. M., and Kim, H. R., Dexamethasone suppresses tumor necrosis factor-alpha-induced apoptosis in osteoblasts: possible role for ceramide.Endocrinology, 141, 2904–2913 (2000a).PubMedCrossRefGoogle Scholar
  6. Chae, H. J., Kang, J. S., Byun, J. O., Han, K. S., Kim, D. U., Oh, S. M., Kim, H. M., Chae, S. W., and Kim, H. R., Molecular mechanism of staurosporine-induced apoptosis in osteo-blasts.Pharmacol. Res., 42, 373–381 (2000b).PubMedCrossRefGoogle Scholar
  7. Gowen, M., Wood, D. D., Ihrie, E. J., McGuire, M. K., and Russell, R. G., An interleukin 1 like factor stimulates bone resorptionin vitro.Nature, 306, 378–380 (1983).PubMedCrossRefGoogle Scholar
  8. Grabowski, P. S., England, A. J., Dykhuizen, R., Copland, M., Benjamin, N., Reid, D. M., and Ralston, S. H., Elevated nitric oxide production in rheumatoid arthritis. Detection using the fasting urinary nitrate:creatinine ratio.Arthritis Rheum., 39, 643–647 (1996).PubMedCrossRefGoogle Scholar
  9. Green, L. C., De Luzuriaga, K. R., Wagner, D. A., Rand, W., Istfan, N., Young, V. R., and Tannenbaum, S. R., Nitrate biosynthesis in the germfree and conventional rat.Science (Wash DC), 212, 56–68 (1981).CrossRefGoogle Scholar
  10. Hukkanen, M., Hughes, F. J., Buttery, L. D., Gross, S. S., Evans, T. J., Seddon, S., Riveros-Moreno, V., Macintyre, I., and Polak, J. M., Cytokine-stimulated expression of inducible nitric oxide synthase by mouse, rat, and human osteoblast-like cells and its functional role in osteoblast metabolic activity.Endocrinology, 136, 5445–5453 (1995).PubMedCrossRefGoogle Scholar
  11. Ihbe, A., Baumann, G., Heinzmann, U., and Atkinson, M. J., Loss of the differentiated phenotype precedes apoptosis of ROS 17/2.8 osteoblast-like cells.Calcif. Tissue Int., 63, 208–213 (1998).PubMedCrossRefGoogle Scholar
  12. Jilka, R. L, Weinstein, R. S., Bellido, T., Parfitt, A. M., and Manolagas, S. C., Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines.J.Bone Miner. Res., 13, 793–802 (1998).PubMedCrossRefGoogle Scholar
  13. Kang, Y. J., Koo, E. B., Lee, Y. S., Yun-Choi, H. S., and Chang, K. C., Prevention of the expression of inducible nitric oxide synthase by a novel positive inotropic agent, YS 49, in rat vascular smooth muscle and RAW 264.7 macrophages.Br. J. Pharmacol., 128, 357–364 (1999).PubMedCrossRefGoogle Scholar
  14. Kitajima, I., Nakajima, T., Imamura, T., Takasaki, I., Kawahara, K., Okano, T., Tokioka, T., Soejima, Y., Abeyama, K., and Maruyama, I., Induction of apoptosis in murine clonal osteoblasts expressed by human T-cell leukemia virus type I tax by NF-kappa B and TNF-alpha.J. Bone Miner. Res., 11, 200–210 (1996).PubMedCrossRefGoogle Scholar
  15. Kim, H. K., Lee, H. K., Shin, C. G., and Huh, H., HIV integrase inhibitory activity ofAgastache rugosa.Arch. Pharm. Res., 22, 520–523 (1999).PubMedGoogle Scholar
  16. Lee, C. H, Kim, H. N., and Kho, K. E., Agastinol and agastenol, novel ligans fromAgastache rugosa and their evaluation in an apoptosis inhibition assay.J. Nat. Prod., 65, 414–416 (2002).PubMedCrossRefGoogle Scholar
  17. Lin, S. K., Kok, S. H., Kuo, M. Y., Lee, M. S., Wang, C. C., Lan, W. H., Hsiao, M., Goldring, S. R., and Hong, C. Y., Nitric oxide promotes infectious bone resorption by enhancing cytokin-stimulated interstitial collagenase synthesis in osteoblasts.J. Bone Miner. Res., 18, 39–46 (2003).PubMedCrossRefGoogle Scholar
  18. Niederberger, E., Tegeder, I., Schafer, C, Seegel, M., Grosch, S., and Geisslinger, G., Opposite effects of rofecoxib on nuclear factor-kappaB and activating protein-1 activation.J. Pharmacol. Exp. Ther., 304, 1153–1160 (2003).PubMedCrossRefGoogle Scholar
  19. Marpherson, H., Noble, B. S., and Ralston, S. H., Expression and functional role of nitric oxide synthase isoforms in human osteoblast-like cells.Bone, 24, 179–185 (1999).CrossRefGoogle Scholar
  20. Mcsheehy, P. M. and Chambers, T. J., Osteoblastic cells mediate osteoclastic responsiveness to parathyroid hormone.Endocrinology, 118, 824–828 (1986).PubMedGoogle Scholar
  21. Mogi, M., Kinpara, K., Kondo, A., and Togari, A., Involvement of nitric oxide and biopterin in proinflammatory cytokine-induced apoptotic cell death in mouse osteoblastic cell line MC3T3-E1.Biochem. Pharmacol., 58, 649–654 (1999).PubMedCrossRefGoogle Scholar
  22. Mogi, M., Kondo, A., Kinpara, K., and Togari, A., Anti-apoptotic action of nerve growth factor in mouse osteoblastic cell line.Life Sci., 67, 1197–1206 (2000).PubMedCrossRefGoogle Scholar
  23. Pelletier, J. P., Fernandes J. C., Jovanovic, D. V., Reboul, P., and Martel-Pelletier, J., Chondrocyte death in experimental osteoarthritis is mediated by MEK 1/2 and p38 pathways: role of cyclooxygenase-2 and inducible nitric oxide synthase.J. Rheumatol., 11, 2509–2519 (2001).Google Scholar
  24. Rodan, G. A. and Noda, M., Gene expression in osteoblastic cells.Crit. Rev. Eukaryot. GeneExpr., 1, 85–98 (1991).Google Scholar
  25. Sandhu, J. K., Robertson, S., Birnboim, H. C., and Goldstein, R., Distribution of protein nitrotyrosine in synovial tissues of patients with rheumatoid arthritis and osteoarthritis.J. Rheumatol., 30, 1173–1181 (2003).PubMedGoogle Scholar
  26. Shin, S., Essential oil compounds fromAgastache rugosa as antifungal agents against Trichophyton species.Arch. Pharm. Res., 27, 295–299 (2004).PubMedCrossRefGoogle Scholar
  27. Wang, E. A., Rosen, V., DAIessandro, J. S., Bauduy, M., Cordes, P., Harada, T., Israel, D. I., Hewick, R. M., Kerns, K. M., LaPan, P., Luxenberg, D. P., McQuaid, D., Moutsatsos, K. I., Nove, J., and Wozney, J. M., Recombinant human bone morphogenetic protein induces bone formation.Proc. Natl. Acad. Sci. U.S.A., 87, 2220–2224 (1990).PubMedCrossRefGoogle Scholar
  28. Wetterwald, A., Hoffstetter, W., Cecchini, M. G., Lanske, B., Wagner, C., Fleisch, H., and Atkinson, M., Characterization and cloning of the E11 antigen, a marker expressed by rat osteoblasts and osteocytes.Bone, 18, 125–132 (1996).PubMedCrossRefGoogle Scholar
  29. Yamaguchi, A., Katagiri, T., Ikeda, T., Wozney, J. M., Rosen, V., Wang, E. A., Kahn, A. J., Suda, T., and Yoshiki, S., Recombinant human bone morphogenetic protein-2 stimulates osteoblastic maturation and inhibits myogenic differentiationin vitro.J. Cell Biol., 113, 681–687 (1991).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2005

Authors and Affiliations

  • Hwa Min Oh
    • 1
  • Young Jin Kang
    • 1
  • Sun Hee Kim
    • 1
  • Young Soo Lee
    • 1
  • Min Kyu Park
    • 1
  • Ja Myung Heo
    • 1
  • Jin ji Sun
    • 1
  • Hyo Jung Kim
    • 1
  • Eun Sil Kang
    • 1
  • Hye Jung Kim
    • 1
  • Han Geuk Seo
    • 1
  • Jae Heun Lee
    • 1
  • Hye Sook Yun-Choi
    • 2
    • 1
  • Ki Churl Chang
    • 1
  1. 1.Department of Pharmacology, College of Medicine, and Institute of Health SciencesGyeongsang National UniversityJinjuKorea
  2. 2.Natural Products Research InstituteSeoul National UniversitySeoulKorea

Personalised recommendations