Advertisement

The isolation and antioxidative effects of vitexin fromAcer palmatum

  • Jin Hwa Kim
  • Bum Chun Lee
  • Jin Hui Kim
  • Gwan Sub Sim
  • Dong Hwan Lee
  • Kyung Eun Lee
  • Yeo Pyo Yun
  • Hyeong Bae Pyo
Drug design

Abstract

Free radicals and reactive oxygen species (ROS) caused by UV exposure or other environmental factors are critical players in cellular damage and aging. In order to develop a new antiphotoaging agent, this work focused on the antioxidant effects of the extract of tinged autumnal leaves ofAcer palmatum. One compound was isolated from an ethyl acetate soluble fraction of theA. palmatum extract using silica gel column chromatography. The chemical structure was identified as apigenin-8-C-beta-D-glucopyranoside, more commonly known as vitexin, by spectral analysis including LC-MS, FT-IR, UV,1H-, and13C-NMR. The biological activities of vitexin were investigated for the potential application of its anti-aging effects in the cosmetic field. Vitexin inhibited superoxide radicals by about 70% at a concentration of 100 μg/mL and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals by about 60% at a concentration of 100 μg/mL Intracellular ROS scavenging activity was indicated by increases in dichlorofluorescein (DCF) fluorescence upon exposure to UVB 20 mJ/cm2 in cultured human dermal fibroblasts (HDFs) after the treatment of vitexin. The results show that oxidation of 5-(6-)chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate (CM-H2DCFDA) is inhibited by vitexin effectively and that vitexin has a potent free radical scavenging activity in UVB-irradiated HDFs. In ROS imaging using a confocal microscope we visualized DCF fluorescence in HDFs directly. In conclusion, our findings suggest that vitexin can be effectively used for the prevention of UV-induced adverse skin reactions such as free radical production and skin cell damage.

Key words

Acer palmatum Vitexin Antioxidant Free radical Photoprotection 

References

  1. Afitlhile, M. M., Dent, R. M., and Cowan, A. K., Changes in carotenoid composition in senescing leaves ofHordeum vulgare L. cv. Dyan.J. Plant Physiol., 142, 4349 (1993).Google Scholar
  2. Aritomi, M., Chemical constituents in Aceraceous plants. 1. Flavonoid constituents in the leaves ofAcer palmatum Thunberg.Yakugaku Zasshi, 83, 737–740 (1963).PubMedGoogle Scholar
  3. Aritomi, M., Chemical constituents in Aceraceous plants. 3. Flavonoid constituents in leaves ofAcer cissifolium K. Koch.Chem. Pharm. Bull., 12, 841–843 (1964).PubMedGoogle Scholar
  4. Bandoniene, D. and Murkovic, M., On-line HPLC-DPPH screening method for evaluation of radical scavenging phenols extracted from apples (Malus domestica L.).J. Agric. Food Chem., 50, 2482–2487 (2002).PubMedCrossRefGoogle Scholar
  5. Bestwick, C. S. and Milne, L., Quercetin modifies reactive oxygen levels but exerts only partial protection against oxidative stress within HL-60 cells.Biochim. Biophys. Acta, 1528, 48–59 (2001).Google Scholar
  6. Blois, M. S., Antioxidant determinations by the use of a stable free radical.Nature, 181, 1199–1200 (1958).CrossRefGoogle Scholar
  7. Bonina, F., Puglia, C., Ventura, D., Aquino, R., Tortora, S., Sacchi, A., Saija, A., Tomaino, A., Pellegrino, M. L., and de Capariis P.,In vitro antioxidant andin vivo photoprotective effects of a lyophilized extract ofCapparis spinosa L. buds.J. Cosmet. Sci., 53, 321–335 (2002).PubMedGoogle Scholar
  8. Bors, W. and Michel, C., Chemistry of the antioxidant effect of polyphenols.Ann. N. Y. Acad. Sci., 957, 57–69 (2002).PubMedCrossRefGoogle Scholar
  9. Cathcart, R., Schwiers, E., and Ames, B. N., Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay.Anal. Biochem., 134, 111–116 (1983).PubMedCrossRefGoogle Scholar
  10. Dauborn, B. and Brueggemann, W., A spontaneous point mutation in rubisco large subunit gene impairing holoenzyme assemblyrenders the IV beta plastome mutant of Oenothera extremely light and chilling sensitive.Physiol. Plant, 104, 116–124(1998).CrossRefGoogle Scholar
  11. Feild, T. S., Lee, D. W., and Holbrook, N. M., Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood,Plant Physiol., 127, 566–574 (2001).PubMedCrossRefGoogle Scholar
  12. Furuno, K., Akasako, T., and Sugihara, N., The contribution of the pyrogallol moiety to the superoxide radical scavenging activity of flavonoids.Biol. Pharm. Bull., 25, 19–23 (2002).PubMedCrossRefGoogle Scholar
  13. Gaitan, E., Cooksey, R. C, Legan, J., and Lindsay, R. H., Antithyroid effectsin vivo andin vitro of vitexin: a C-glycosylflavone in millet.J. Clin. Endocrinol. Metab., 80, 1144–1147 (1995).PubMedCrossRefGoogle Scholar
  14. Greenham, J., Harbome, J. B., and Williams, C. A., Identification of lipophilic flavones and flavonols by comparative HPLC, TLC, and UV spectral analysis.Phytochem. Anal., 14, 100–118 (2003).PubMedCrossRefGoogle Scholar
  15. Ham, I. H., Oh, I. S., Whang, W. K., and Kim I. H., Pharmaco-constituents of Korean cultivated Rhubarb leaves-the flavonoids from leaves.Yakhak Hoeji, 38, 469–475 (1994).Google Scholar
  16. Harborne, J. B., Nature, Distribution and function of plant flavonoids.Prog. Clin. Biol. Res., 213, 15–24 (1986).PubMedGoogle Scholar
  17. Harman, D., Role of free radical reactions in aging and disease.J. Geriat. Dermatol., 5, 114–127 (1997).Google Scholar
  18. Katiyar, S. K., Afaq, F., Perex, A., and Mukhtar, H., Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress.Carcinogenesis, 22, 287–294 (2001).PubMedCrossRefGoogle Scholar
  19. Khettab, N., Amory, M. C., Brigand, G., Bousquet, B., and Combre, A., Photoprotective effect of vitamins A and E on polyamine and oxygenated free radical metabolism in hairless mouse epidermis.Biochimie, 70, 1709–1713 (1988).PubMedCrossRefGoogle Scholar
  20. LeBel, C. P., Ischiropoulos, H., and Bondy, S. C, Evaluation of the probe 2,7-dichlorofluorescein as an indicator of reactive oxygen species formation and oxidative stress.Chem. Res. Toxicol., 5, 227–231 (1992).PubMedCrossRefGoogle Scholar
  21. Lee, B. C., Bae, J. T., Pyo, H. B., Choe, T. B., Kim, S. W., Hwang, H. J., and Yun, J. W., Biological activities of the polysaccharides produced from submerged culture of the edible BasidiomyceteGrifola Frondosa.Enzyme Microb. Technol., 6274, 1–8 (2003).Google Scholar
  22. Mathews-Roth, M. M., Carotenoid pigment administration and the delay in development of UVB-induced tumors.Photochem. Photobiol., 42, 35–38 (1983).CrossRefGoogle Scholar
  23. Middleton, E. Jr., Kandaswami, C., and Theoharides, T. C., The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev., 52, 673–751 (2000).PubMedGoogle Scholar
  24. Nijveldt, R. J., Nood, E., Hoorn, D. EC, Boelens, P. G., Norren, K., and Leeuwen, P.AM, Flavonoids: a review of probable mechanisms of action and potential applications.Am. J. Clin. Nutr., 74, 418–425 (2001).PubMedGoogle Scholar
  25. Norins, A. L, Free radical formation in the skin following exposure to ultraviolet light.J. Invest. Dermatol., 39, 445–448 (1962).PubMedGoogle Scholar
  26. Oh, I. S., Whang, W. K., and Kim, I. H., Constituents ofCrataegus pinnatifida val. psilosa Leaves (II) Flavonoids from BuOH fraction.Arch. Pharm. Res., 17, 314–317 (1994).CrossRefGoogle Scholar
  27. Prabhakar, M. C., Bano, H., Kumar, I., Shamsi, M. A., and Khan, M. S. Y, Pharmacological investigations on vitexin.Planta medica, 43, 396–403 (1981).CrossRefGoogle Scholar
  28. Riipi, M., Ossipov V., Lempa, K., Haukioja, E., Koricheva, J., Ossipova, S., and Pihlaja, K., Seasonal changes in birch leaf chemistry: are there trade-offs between leaf growth and accumulation of phenolics?Oecologia, 130, 380–390 (2002).CrossRefGoogle Scholar
  29. Ryoo, Y. W., Suh, S. I., Mun, K. C., Kim, B. C., and Lee, K. S., The effects of the melatonin on ultraviolet-B irradiated cultured dermal fibroblasts.J. Dermatol. Sci., 27, 162–169 (2001).PubMedCrossRefGoogle Scholar
  30. Savini, I., DAngelo, I., Ranalli, M., Melino, G., and Avigliano, L, Ascorbic acid maintenance in HaCaT cells prevents radical formation and apoptosis by UVB.Free Radio. Biol. Med., 26, 1172–1180 (1999).CrossRefGoogle Scholar
  31. Seo, S. Y., Kim, E. Y., Kim, H., and Gwang, B. J, Neuroprotective effect of high glucose agains NMDA, free radical and oxygen-glucose deprivation through enhanced mitochondrial potentials.J. Neurosci., 19, 8849–8855 (1999).PubMedGoogle Scholar
  32. Shibamoto, T., Sulfur-containing heterocyclic compounds with antioxidative activity.Am. Chem. Soc, 564, 247–256 (1994).Google Scholar
  33. Tampo, Y., Kotamraju, S., Chitambar, C. R., Kalivendi, S. V., Keszler, A., Joseph, J., and Kalyanaraman, B., Oxidative stress-induced iron signaling is responsible for peroxide-dependent oxidation of dichlorodihydrofluorescein in endothelial cells.Circ. Res., 92, 56–63 (2003).PubMedCrossRefGoogle Scholar
  34. Tobi, S. E., Gilbert, M., Paul, N., and McMillan, T. J., The green tea polyphenol, epigallocatechin-3-gallate, protects against the oxidative cellular and genotoxic damage of UVA radiation.Int. J. Cancer, 102, 439–444 (2002).PubMedCrossRefGoogle Scholar
  35. Trayner, I. D., Rayner, A. P., Freeamn, G. E., and Farzaneh, F., Quantitative multiwell myeloid differentiation assay using dichlorodihydrofluorescein diacetate (H2DCFDA) or dihydrorhodamine 123 (H2R123).J. Immunol. Methods, 186, 275–284 (1995).PubMedCrossRefGoogle Scholar
  36. Yoo, S. W., Kim, J. S., Kang, S. S., Son, K. H., Chang, H. W., Kim, H. P., Bae, K. H., and Lee, C. O., Constituents of the fruits and leaves ofEuodia danielli.Arch. Pharm. Res., 25, 824–830 (2002).PubMedCrossRefGoogle Scholar
  37. Young, A. J., Wellings R., and Britton G., The fate of chloroplast pigments during senescence of primary leaves ofHordeum vulgare andAvena sativum.J. Plant Physiol., 137, 701–705 (1991).Google Scholar
  38. Zhang, H., Joseph, J., Felix, C., and Kalyanaraman, B., Bicarbonate enhances the hydroxylation, nitration, and peroxidation reactions catalyzed by copper, zinc superoxide dismutase: intermediacy of carbomate anion radical.J. Biol. Chem., 275, 14038–14045 (2000).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2005

Authors and Affiliations

  • Jin Hwa Kim
    • 1
  • Bum Chun Lee
    • 1
  • Jin Hui Kim
    • 1
  • Gwan Sub Sim
    • 1
  • Dong Hwan Lee
    • 1
  • Kyung Eun Lee
    • 1
  • Yeo Pyo Yun
    • 2
  • Hyeong Bae Pyo
    • 1
    • 2
  1. 1.R&D CenterHanbul Cosmetics Co. Ltd.ChungbukKorea
  2. 2.College of PharmacyChungbuk National UniversityCheongjuKorea

Personalised recommendations