Advertisement

Archives of Pharmacal Research

, Volume 28, Issue 4, pp 421–432 | Cite as

Reabsorption of neutral amino acids mediated by amino acid transporter LAT2 and TAT1 in the basolateral membrane of proximal tubule

  • Sun Young Park
  • Jong-Keun Kim
  • In Jin Kim
  • Bong Kyu Choi
  • Kyu Yong Jung
  • Seoul Lee
  • Kyung Jin Park
  • Arthit Chairoungdua
  • Yoshikatsu Kanai
  • Hitoshi Endou
  • Do Kyung Kim
Drug development

Abstract

In order to understand the renal reabsorption mechanism of neutral amino acids via amino acid transporters, we have isolated human L-type amino acid transporter 2 (hLAT2) and human T-type amino acid transporter 1 (hTAT1) in human, then, we have examined and compared the gene structures, the functional characterizations and the localization in human kidney. Northern blot analysis showed that hLAT2 mRNA was expressed at high levels in the heart, brain, placenta, kidney, spleen, prostate, testis, ovary, lymph node and the fetal liver. The hTAT1 mRNA was detected at high levels in the heart, placenta, liver, skeletal muscle, kidney, pancreas, spleen, thymus and prostate. Immunohistochemical analysis on the human kidney revealed that the hLAT2 and hTAT1 proteins coexist in the basolateral membrane of the renal proximal tubules. The hLAT2 transports all neutral amino acids and hTAT1 transports aromatic amino acids. The basolateral location of the hLAT2 and hTAT1 proteins in the renal proximal tubule as well as the amino acid transport activity of hLAT2 and hTAT1 suggests that these transporters contribute to the renal reabsorption of neutral and aromatic amino acids in the basolateral domain of epithelial proximal tubule cells, respectively. Therefore, LAT2 and TAT1 play essential roles in the reabsorption of neutral amino acids from the epithelial cells to the blood stream in the kidney. Because LAT2 and TAT1 are essential to the efficient absorption of neutral amino acids from the kidney, their defects might be involved in the pathogenesis of disorders caused by a disruption in amino acid absorption such as blue diaper syndrome.

Key words

L-Type amino acid transporter 2 (LAT2) T-Type amino acid transporter 1 (TAT1) Amino acids Reabsorption mechanism Kidney 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman, A., Cardenas, J. M., Houghten, R. A., Dixon, F. J., and Theofilopoulos, A. N., Antibodies of predetermined specificity against chemically synthesized peptides of human inter-leukin 2.Proc. Natl. Acad. Sci. U.S.A., 81,2176–2180 (1984).PubMedCrossRefGoogle Scholar
  2. Blondeau, J. P., Beslin, A., Chantoux, F., and Francon, J., Triiodothyronine is a high-affinity inhibitor of amino acid transport system L1 in cultured astrocytes.J. Neurochem., 60,1407–1413(1993).PubMedCrossRefGoogle Scholar
  3. Broer, A., Klingel, K., Kowalczuk, S., Rasko, J. E., Cavanaugh, J., and Broer, S., Molecular cloning of mouse amino acid transport system B°, a neutral amino acid transporter related to Hartnup disorder.J. Biol. Chem., 279,24467–24476 (2004).PubMedCrossRefGoogle Scholar
  4. Chillaron, J., Estevez, R., Mora, C, Wagner, C. A., Suessbrich, H., Lang, F., Gelpi, J. L., Testar, X., Busch, A. E., Zorzano, A., and Palacin, M., Obligatory amino acid exchangevia systems b°,+-like and y+L-like. A tertiary active transport mechanism for renal reabsorption of cystine and dibasic amino acids.J. Biol. Chem., 271,17761–17770 (1996).PubMedCrossRefGoogle Scholar
  5. Christensen, H. N., Role of amino acid transport and countertransport in nutrition and metabolism.Physiol. Rev., 70, 43–77(1990).PubMedGoogle Scholar
  6. Goldenberg, G. J., Lam, H. Y., Begleiter, A., Active carrier-mediated transport of melphalan by two separate amino acid transport systems in LPC-1 plasmacytoma cellsin vitro.J. Biol. Chem., 254,1057–1064 (1979).PubMedGoogle Scholar
  7. Gomes, P. and Soares-da-Silva, P., L-DOPA transport properties in an immortalized cell line of rat capillary cerebral endothelial cells, RBE 4.Brain Res., 829,143–150 (1999).PubMedCrossRefGoogle Scholar
  8. Heng, H. H. Q., Squire, J., and Tsui, L. -C., High resolution mapping of mammalian genes byin situ hybridization to free chromosome.Proc. Natl. Acad. Sci. U.S.A., 89, 9509–9513 (1992).PubMedCrossRefGoogle Scholar
  9. Heng, H. H. Q. and Tsui, L.-C., Modes of DAPI banding and simultaneouslyin situ hybridization.Chromosoma, 102,325–332(1993).PubMedCrossRefGoogle Scholar
  10. Hirokawa, T., Boon-Chieng, S., and Mitaku, S., SOSUI: classification and secondary structure prediction system for membrane proteins.Bioinformatics, 14,378–379 (1998).PubMedCrossRefGoogle Scholar
  11. Hisano, S., Haga, H., Miyamoto, K., Takeda, E., and Fukui, Y., The basic amino acid transporter (rBAT)-like immunoreactivity in paraventricular and supraoptic magnocellular neurons of the rat hypothalamus.Brain Res., 710, 299–302 (1996).PubMedCrossRefGoogle Scholar
  12. Kanai, Y. and Hediger, M. A., Primary structure and functional characterization of a high-affinity glutamate transporter.Nature, 360,467–471 (1992).PubMedCrossRefGoogle Scholar
  13. Kanai, Y., Segawa, H., Miyamoto, K., Uchino, H., Takeda, E., and Endou, H., Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98).J. Biol. Chem., 273, 23629–23632(1998).PubMedCrossRefGoogle Scholar
  14. Kanai, Y. and Endou, H., Heterodimeric amino acid transporters: molecular biology and pathological and pharmacological relevance.Curr. Drug Metab., 2,339–354 (2001).PubMedCrossRefGoogle Scholar
  15. Kim, D. K., Kanai, Y, Chairoungdua, A., Matsuo, H., Cha, S. H., and Endou, H., Expression cloning of a Na+-independent aromatic amino acid transporter with structural similarity to H+/monocarboxylate transporters.J. Biol. Chem., 276, 17221–17228(2001).PubMedCrossRefGoogle Scholar
  16. Kim, D. K., Kanai, Y., Choi, H. W., Tangtrongsup, S., Chairoungdua, A., Babu, E., Tachampa, K., Anzai, N., Iribe, Y., and Endou, H., Characterization of the system L amino acid transporter in T24 human bladder carcinoma cells.Biochim. Biophys. Acta, 1565,112–121 (2002a).PubMedCrossRefGoogle Scholar
  17. Kim, D. K., Kanai, Y., Matsuo, H., Kim, J. Y., Chairoungdua, A., Kobayashi, Y., Enomoto, A., Cha, S. H., Goya, T., and Endou, H., The human T-type amino acid transporter-1: characterization, gene organization, and chromosomal location.Genomics, 79, 95–103 (2002b).PubMedCrossRefGoogle Scholar
  18. Lakshmanan, M., Goncalves, E., Lessly, G., Foti, D., and Robbins, J., The transport of thyroxine into mouse neuroblastoma cells, NB41A3: the effect of L-system amino acids.Endocrinology, 126,3245–3250 (1990).PubMedCrossRefGoogle Scholar
  19. Lee, S. H., Chae, K. S., Nan, J. X., and Sohn, D. H., The increment of purine specific sodium nucleoside cotransporter mRNA in experimental fibrotic liver induced by bile duct ligation and scission.Arch. Pharm. Res., 23,613–619 (2000).PubMedCrossRefGoogle Scholar
  20. Lee, S. H., Chae, K. S., and Sohn, D. H., Identification of expressed sequence tags of genes expressed highly in the activated hepatic stellate cell.Arch. Pharm. Res., 27, 422–428 (2004).PubMedCrossRefGoogle Scholar
  21. Mannion, B. A., Kolesnikova, T. V., Lin, S. -H., Thompson, N. L., and Hemler, M. E., The light chain of CD98 is identified as E16/TA1 protein.J. Biol. Chem., 273,33127–33129 (1998).PubMedCrossRefGoogle Scholar
  22. Mizoguchi, K., Cha, S. H., Chairoungdua, A., Kim, D. K., Shigeta, Y., Matsuo, H., Fukushima, J., Awa, Y., Akakura, K., Goya, T., Ito, H., Endou, H., and Kanai, Y., Human cystinuria-related transporter: localization and functional characterization.Kidney Int., 59,1821–1833 (2001).PubMedCrossRefGoogle Scholar
  23. Nakamura, E., Sato, M., Yang, H., Miyagawa, F., Harasaki, M., Tomita, K., Matsuoka, S., Noma, A., Iwai, K., and Minato, N., 4F2 (CD98) heavy chain is associated covalently with an amino acid transporter and controls intracellular trafficking and membrane topology of 4F2 heterodimer.J. Biol. Chem., 274,3009–3016(1999).PubMedCrossRefGoogle Scholar
  24. Nii, T., Segawa, H., Taketani, Y., Tani, Y., Ohkido, M., Kishida, S., Ito, M., Endou, H., Kanai, Y., Takeda, E., and Miyamoto, K., Molecular events involved in up-regulating human Na+-independent neutral amino acid transporter LAT1 during T-cell activation.Biochem. J., 358,693–704 (2001).PubMedCrossRefGoogle Scholar
  25. Oxender, D. L. and Christensen, H. N., Evidence for two types of mediation of neutral amino acid transport in Ehrlich cells.Nature, 197,765–767 (1963).PubMedCrossRefGoogle Scholar
  26. Palacin, M., Estevez, R., Bertran, J., and Zorzano, A., Molecular biology of mammalian plasma membrane amino acid transporters.Physiol. Rev., 78, 969–1054 (1998).PubMedGoogle Scholar
  27. Peghini, P., Janzen, J., and Stoffel, W., Glutamate transporter EAAC-1-deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration.EMBOJ., 16, 3822–3832 (1997).CrossRefGoogle Scholar
  28. Pfeiffer, R., Spindler, B., Loffing, J., Skelly, P. J., Shoemaker, C. B., and Verrey, F., Functional heterodimeric amino acid transporters lacking cysteine residues involved in disulfide bond.FEBS Lett., 439,157–162 (1998).PubMedCrossRefGoogle Scholar
  29. Pineda, M., Fernandez, E., Torrents, D., Estevez, R., Lopez, C., Camps, M., Lloberas, J., Zorzano, A., and Palacin, M., Identification of a membrane protein, LAT-2, that Co-expresses with 4F2 heavy chain, an L-type amino acid transport activity with broad specificity for small and large zwitterionic amino acids.J. Biol. Chem., 274, 19738–19744 (1999).PubMedCrossRefGoogle Scholar
  30. Prasad, P. D., Wang, H., Huang, H., Kekuda, R., Rajan, D. P., Leibach, F. H., and Ganapathy, V., Human LAT1, a subunit of system L amino acid transporter: molecular cloning and transport function.Biochem. Biophys. Res. Commun., 255, 283–288(1999).PubMedCrossRefGoogle Scholar
  31. Rosenberg, R., Young, J. D., and Ellory, J. C., L-tryptophan transport in humanred blood cells.Biochim. Biophys. Acta, 598,375–384(1980).PubMedCrossRefGoogle Scholar
  32. Rossier, G., Meier, C., Bauch, C., Summa, V., Sordat, B., Verrey, F., and Kuhn, L. C., LAT2, a new basolateral 4F2hc/ CD98-associated amino acid transporter of kidney and intestine.J. Biol. Chem., 274, 34948–34954 (1999).PubMedCrossRefGoogle Scholar
  33. Sang, J., Lim, Y. -P., Panzia, M., Finch, P., and Thompson, N. L., TA1, a highly conserved oncofetal complementary DNA from rat hepatoma, encodes an integral membrane protein associated with liver development, carcinogenesis, and cell activation.Cancer Res., 55,1152–1159 (1995).PubMedGoogle Scholar
  34. Segawa, H., Fukasawa, Y., Miyamoto, K., Takeda, E., Endou, H., and Kanai, Y., Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity.J. Biol. Chem., 274, 19745–19751 (1999).PubMedCrossRefGoogle Scholar
  35. Shayakul, C., Kanai, Y., Lee, W. S., Brown, D., Rothstein, J. D., and Hediger, M. A., Localization of the high-affinity glutamate transporter EAAC1 in rat kidney.Am. J. Physiol., 273, F1023-F1029 (1997).PubMedGoogle Scholar
  36. Silbernagl, S., Renal transport of amino acids.Klin. Wochenschr., 57,1009–1019, (1979).PubMedCrossRefGoogle Scholar
  37. Stevens, B. R., Kaunitz, J. D., and Wright, E. M., Intestinal transport of amino acids and sugars: advances using membrane vesicles.Anna Rev. Physiol., 46,417–433 (1984).CrossRefGoogle Scholar
  38. Su, T. Z., Lunney, E., Campbell, G., and Oxender, D. L., Transport of gabapentin, a gamma-amino acid drug, by system I alpha-amino acid transporters: a comparative study in astrocytes, synaptosomes and CHO cells.J. Neurochem., 64,2125–2131 (1995).PubMedCrossRefGoogle Scholar
  39. Utsunomiya-Tate, N., Endou, H., and Kanai, Y., Cloning and functional characterization of a system ASC-like Independent neutral amino acid transporter.J. Biol. Chem., 271,14883–14890(1996).PubMedCrossRefGoogle Scholar
  40. Utsunomiya-Tate, N., Endou, H., and Kanai, Y., Tissue specific variants of glutamate transporter GLT-1.FEBS Lett., 416, 312–316(1997).PubMedCrossRefGoogle Scholar
  41. van Winkle, L. J., Mann, D. E., Campione, A. L., and Farrington, B. H., Transport of benzenoid amino acids by system T and four broad scope systems in preimplantation mouse conceptuses.Biochim. Biophys. Acta, 1027,268–277 (1990).PubMedCrossRefGoogle Scholar
  42. Wolf, D. A., Wang, S., Panzia, M. A., Bassily, N. H., and Thompson, N. L., Expression of a highly conserved oncofetal gene, TA1/E16, in human colon carcinoma and other primary cancers: homology to Schistosoma mansoni amino acid permease and Caenorhabditis elegans gene products.Cancer Res., 56, 5012–5022 (1996).PubMedGoogle Scholar
  43. Yanagida, O., Kanai, Y., Chairoungdua, A., Kim, D. K., Segawa, H., Nii, T., Cha, S. H., Matsuo, H., Fukushima, J., Fukasawa, Y., Tani, Y., Taketani, Y., Uchino, H., Kim, J. Y., Inatomi, J., Okayasu, I., Miyamoto, K., Takeda, E., Goya, T, and Endou, H., Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines.Biochim. Biophys. Acta, 1514, 291–302 (2001).PubMedCrossRefGoogle Scholar
  44. Yoon, J. H., Kim, Y. B., Kim, M. S., Park, J. C., Kook, J. K., Jung, H. M., Kim, S. G., Yoo, H., Ko, Y. M., Lee, S. H., Kim, B. Y., Chun, H. S., Kanai, Y., Endou, H., and Kim, D. K., Expression and functional characterization of the system L amino acid transporter in KB human oral epidermoid carcinoma cells.Cancer Lett., 205,215–226 (2004).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2005

Authors and Affiliations

  • Sun Young Park
    • 1
    • 5
  • Jong-Keun Kim
    • 2
    • 5
  • In Jin Kim
    • 5
  • Bong Kyu Choi
    • 3
    • 5
  • Kyu Yong Jung
    • 3
    • 5
  • Seoul Lee
    • 3
    • 5
  • Kyung Jin Park
    • 5
  • Arthit Chairoungdua
    • 4
    • 5
  • Yoshikatsu Kanai
    • 4
    • 5
  • Hitoshi Endou
    • 4
    • 5
  • Do Kyung Kim
    • 5
  1. 1.Department of PediatricsKwangju Christian HospitalGwangjuKorea
  2. 2.Department of PharmacologyChonnam National University Medical SchoolGwangjuKorea
  3. 3.Department of PharmacologyWonkwang University School of MedicineIksanKorea
  4. 4.Department of Pharmacology and ToxicologyKyorin University School of MedicineTokyoJapan
  5. 5.Department of Oral PhysiologyChosun University College of DentistryGwangjuKorea

Personalised recommendations