A methodological approach for the economic assessment of best available techniques demonstrated for a case study from the steel industry

LCA Methodology

Abstract

The determination and the assessment of Best Available Techniques (BAT) is one of the key issues in the realisation of the IPPC-Directive. While research has already focused on environmental benefits and technical practicability of techniques within LCA, little work has been carried out assessing economic feasibility. A methodology for the economic assessment of BAT in the framework of the IPPC-Directive on a plant level has to comprise all costs that accrue by measures to prevent, to reduce, to utilise or to remove emissions into water, air and soil caused by industrial production processes. The applied cost concept provides a systematic accounting and allocation of decision relevant costs and possibly revenues, that are pertinent to the economic assessment of BAT. The application of the methodology to a case study from the steel industry shows the practical use of the approach.

Keywords

Best Available Techniques (BAT) cost allocation decision relevant costs economic assessment electric steelmaking emissions investment related costs IPPC-Directive Life Cycle Assessment (LCA) operating costs steel industry 

References

  1. [1]
    Council of the European Union (ed.) (1996): Directive on Integrated Pollution Prevention and Control. Official Journal of the European Communities, No L 257, 10.10.1996, Brussels, p. 26–40Google Scholar
  2. [2]
    Geldermann J, Spengler T, Rentz O (1999): Proposal for an integrated approach for the assessment of cross-media aspects relevant for the determination of ‘Best Available Techniques‘ BAT in the European Union. International Journal of Life Cycle Assessment 4, pp. 94–105CrossRefGoogle Scholar
  3. [3]
    Hein J, Kippelen C, Schultmann F, Rentz O (1994): Assessment of the cost involved with the Commission’s draft proposal for a Directive on the limitation of the organic solvent emissions from the industrial sectors. Final report, contract N° B4-3040/93/001152/LP/A3, Karlsruhe, GermanyGoogle Scholar
  4. [4]
    Verein Deutscher Ingenieure: Richtlinie 3800 (1979): Kostenermittlung für Anlagen und Maßnahmen zur Emissionsminderung. VDI-Handbuch Reinhaltung der Luft 6, DüsseldorfGoogle Scholar
  5. [5]
    Rentz O (1987): Principle and methodology of cost allocation. Proceedings of the Workshop on emission control costs, September 28–October 1, 1987, Esslingen, Germany, pp. 15–61Google Scholar
  6. [6]
    Wirtschaftsvereinigung Stahl (ed.) (1999): Statistisches Jahrbuch der Stahlindustrie 1999/2000. Verlag Stahleisen GmbH, Düsseldorf, GermanyGoogle Scholar
  7. [7]
    Rentz O, Hähre S, Jochum R, Spengler T (1997): Report on Best Available Techniques in the Electric Steelmaking Indus try, on behalf of the Federal Environmental Agency of Germany. Karlsruhe, GermanyGoogle Scholar
  8. [8]
    Müller G (1993): Stahlschrott aus der Sicht der Stahlindustrie. Stahl und Eisen 113, pp. 127–129Google Scholar
  9. [9]
    Rentz O, Hahre S, Jochum R, Geldermann J, Krippner M, Jahn C, Spengler T, Schultmann F (1999): Exemplarische Untersuchung zum Stand der praktischen Umsetzung des integrierten Umweltschutzes in der Metallindustrie und Entwicklung von generellen Anforderungen. Final report 109 05 006, on behalf of the Federal Environmental Agency of Germany (UBA), Karlsruhe, GermanyGoogle Scholar
  10. [10]
    Krüger K, Timm K (1996): Energieverbrauch und Produktivität von Lichtbogenöfen. Elektrowärme international, 54, December 1996, pp. 177–184Google Scholar
  11. [11]
    Kuhner D, Ploner PP, Bleimann KR (1996): Noise Abatement for Electric Arc Furnaces. Iron and Steel Engineer, 73, Pittsburgh, pp. 83–86Google Scholar
  12. [12]
    Heinen KH (ed.) (1997): Elektrostahl-Erzeugung. 4. Auflage, Verlag Stahleisen GmbH, Düsseldorf, GermanyGoogle Scholar
  13. [13]
    Jehlinghaus M (1994): Stahlerzeugung im Lichtbogenofen. Verlag Stahleisen GmbH, Düsseldorf, GermanyGoogle Scholar
  14. [14]
    Theobald W (1995): Ermittlung und Verminderung der Emissionen von halogenierten Dioxinen und Furnanen aus thermischen Prozessen: Untersuchung der Emissionen polychlorierter Dibenzodioxine und -furane und von Schwermetallen aus Anlagen der Stahlerzeugung. Final report 104 03 365/01, on behalf of the Federal Environmental Agency of Germany (UBA)Google Scholar
  15. [15]
    Weiss D, Karcher A (1996): Ermittlung und Verminderung der Emissionen von Dioxinen und Furanen aus thermischen Prozessen: Untersuchung der Zusammenhänge der Dioxin-/Furanemissionen in Abhängigkeit von Einsatzstoffen und Minderungstechniken bei Elektrolichtbogenöfen. Final report 104 03 365/17, on behalf of the Federal Environmental Agency of Germany (UBA)Google Scholar
  16. [16]
    European Commission (ed.) (2000): Best Available Techniques Reference Document on the Production of Iron and Steel. Final version, March 2000, Seville, SpainGoogle Scholar
  17. [17]
    Rentz O etal. (1996): Emission Control at Stationary Sources in the Federal Republic of Germany Volume II: Heavy Metal Emission Control. French-German Institute for Environmental Research (DFIU), Karlsruhe, GermanyGoogle Scholar
  18. [18]
    Blohm H, Lüder K (1988): Investition. 6. Auflage, Verlag Franz Vahlen GmbH, Munich, GermanyGoogle Scholar

Copyright information

© Ecomed Publishers 2001

Authors and Affiliations

  1. 1.French-German Institute for Environmental ResearchUniversity of Karlsruhe (TH)KarlsruheGermany

Personalised recommendations