Archives of Pharmacal Research

, Volume 28, Issue 9, pp 1031–1036 | Cite as

Antimicrobial property of (+)-lyoniresinol-3α-O-β-d-Glucopyranoside isolated from the root bark ofLycium chinense Miller against human pathogenic microorganisms

Articles Drug Design


(+)-Lyoniresinol-3α-O-β-d-glucopyranoside (1) was isolated from an ethyl acetate extract of the root bark fromLycium chinense Miller, and its structure was determined using 1D and 2D NMR spectroscopy including DEPT, HMQC, and HMBC. (+)-Lyoniresinol-3α-O-β-d-glucopyranoside exhibited potent antimicrobial activity against antibiotic-resistant bacterial strains, methicillinresistantStaphylococcus aureus (MRSA) isolated from patients, and human pathogenic fungi without having any hemolytic effect on human erythrocytes. In particular, compound1 induced the accumulation of intracellular trehalose onC. albicans as stress response to the drug, and disrupted the dimorphic transition that forms pseudo-hyphae caused by the pathogenesis. This indicates that (+)-lyoniresinol-3α-O-β-d-glucopyranoside has excellent potential as a lead compound for the development of antibiotic agents.

Key words

Lycium chinense Solanaceae (+)-Lyoniresinol-3α-O-β-d-glucopyranoside Antimicrobial activity MRSA Stress response 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achenbach, H., Löwel, M., Waibel, R., Gupta, M., and Solis, P., New lignan glucosides fromStemmadenia minima.Planta Med., 58, 270–272 (1992).PubMedCrossRefGoogle Scholar
  2. Alvarez-Peral, F. J. and Arguelles, J.-C., Changes in external trehalase activity during human serum-induced dimorphic transition inCandida albicans.Res. Microbiol., 151, 837–843 (2000).PubMedCrossRefGoogle Scholar
  3. Blondle, S. E. and Houghten, R. A., Design of model amphipathic peptides having potent antimicrobial activities.Biochemistry, 31, 12688–12694 (1992).CrossRefGoogle Scholar
  4. Funayama, S., Yoshida, K., Konno, H., and Hikkino, H., Structure of Kukoamine A, a hypotensive principle ofLycium chinense root bark.Tetrahedron Lett., 21, 1355–1356 (1980).CrossRefGoogle Scholar
  5. Funayama, S., Zhang, G.-R., Nozoe, S., and Kukoamine, B., A spermine alkaloid fromLycium chinense.Phytochemistry, 38, 1529–1531 (1995).CrossRefGoogle Scholar
  6. Han, S.-H., Lee, H.-H., Lee, I.-S., Moon, Y.-H., and Woo, E.-R., A new phenolic amide fromLycium chinense Miller.Arch. Pharm. Res., 25, 433–437 (2002).PubMedCrossRefGoogle Scholar
  7. Kim, S. Y., Choi, Y.-H., Huh, H., Kim, J., Kim, Y. C., and Lee, H. S., New antihepatotoxic cerebroside fromLycium chinense Fruits.J. Nat. Prod., 60, 274–276 (1997).PubMedCrossRefGoogle Scholar
  8. Lehrer, R., Lichtenstein, A. K., and Ganz, T., Defensins: Antimicrobial and cytotoxic peptides of mammalian cells.Annu. Rev. Immunol., 11, 105–128 (1993).PubMedCrossRefGoogle Scholar
  9. Lee, D. G., Park, Y., Kim, M.-R., Jung, H. J., Seu, Y. B., Hahm, K.-S., and Woo, E.-R., Antifungal effects of phenolic amides isolated from the root bark ofLycium chinense.Biotechnol. Lett., 26, 1125–1130 (2004).PubMedCrossRefGoogle Scholar
  10. Mclain, N., Ascaniom, R., Baker, C., Strohaver, R. A., and Dolan, J. W., Undeclenic acid inhibits morphogenesis ofCandida albicans.Antimicrob. Agents Chemothr., 44, 2873–2875 (2000).CrossRefGoogle Scholar
  11. Morota, T., Sasaki, H., Chin, M., Sato, T., Katayama, N., Fukuyama, K., and Mitsuhashi, H., Studies on the crude drug containing the angiotensin I converting enzyme inhibitors (I) on the active principles ofLycium chinense Miller.Shoyakugaku Zasshi, 41, 169–173 (1987).Google Scholar
  12. Sannai, A., Fujimori, T., and Kato, K., Isolation of (−)-1,2-dehydro-α-cyperone and solavetivone fromLycium chinense.Phytochemistry, 21, 2986–2987 (1982).CrossRefGoogle Scholar
  13. Sengupta, S., Jana, M. L., Sengupta, D., and Naskar, A. K., A note on the estimation of microbial glycosidase activities by dinitrosalicylic acid reagent.Appl. Microbiol. Biotechnol., 53, 732–735 (2000).PubMedCrossRefGoogle Scholar
  14. Terauchi, M., Kanamori, H., Nobuso, M., Yahara, S., and Nohara, T., Detection and determination of antioxidative components inLycium chinense.Nat. Med., 51, 387–391Google Scholar
  15. Terauchi, M., Kanamori, H., Nobuso, M., Yahara, S., and Yamasaki, K., New acyclic diterpene glycoside, Lyciumoside IV–IX fromLycium chinense Mill.Nat. Med., 52, 167–171 (1998).Google Scholar
  16. Yahara, S., Shigeyama, C., Ura, T., Wakamatsu, K., Yasuhara, T., and Nohara, T., Cyclic peptides, acyclic diterpene glycoside and other compounds fromLycium chinense Mill.Chem. Pharm. Bull., 41, 703–709 (1993).PubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2005

Authors and Affiliations

  1. 1.Department of MicrobiologyKyungpook National UniversityDaeguKorea
  2. 2.College of PharmacyChosun UniversityGwangjuKorea

Personalised recommendations