Archives of Pharmacal Research

, 30:1599 | Cite as

Anti-asthmatic action of quercetin and rutin in conscious guinea-pigs challenged with aerosolized ovalbumin

  • Chan Hun Jung
  • Ji Yun Lee
  • Chul Hyung Cho
  • Chang Jong Kim
Article Drug efficacy and safety

Abstract

The effects of quercetin and rutin on the asthmatic responses were studied in ovalbumin (OA)-sensitized conscious guinea pigs challenged with aerosolized-OA. We measured the specific airway resistance (sRaw) in the double-chambered plethysmograph during the immediate-phase response (IAR) and late-phase response (LAR) at 3~10 min and 24 hr after OA challenge, respectively. We counted leukocytes in bronchoalveolar lavage fluid (BALF) using Wright’s stain, as well as in lung tissue fixed with 10% formalin and stained with H & E stain. Quercetin and rutin (7.5 mg/kg, p.o.) significantly and dose-dependently inhibited both sRaw on IAR (31.60 and 26.44%) and LAR (29.87 and 28.69%) but with less efficacy than dexam-ethasone (3 mg/kg) and salbutamol (0.3 mg/kg), which inhibited IAR by 36.71 and 69.45%, and LAR by 67.23 and 0%, respectively, Quercetin and rutin (15 mg/kg) also inhibited production of histamine, PLA2, and EPO, and recruitment of leukocytes, particularly neutrophils and eosinophils, during LAR. respectively. Dexamethasone (3 mg/kg) also significantly reduced the recruitment of neutrophils, eosinophils, and lymphocytes in BALF, and salbutamol (0.3 mg/kg) reduced neutrophils and eosinophils with lower activity than dexamethasone. These results indicate that quercetin and rutin may be useful in the treatment of IAR and LAR in asthma via inhibition of histamine release, PLA2, and EPO, and reduced recruitment of neutrophils and eosinophils into the lung.

Key words

Quercetin Rutin Anti-asthmatic action Double-chambered plethysmograph Specific airway resistance Recruitment of neutrophil and eosinophil 

Abbreviations

BALF

Bronchoalveolar lavage fluid

BSA

Bovine serum albumin

BSS

Balanced salt solution

EOS

Eosinophils

H & E

Hematoxylin and eosin

HEPES, 4-(2-hydroxy-ethyl)-1-piperazineethanesulfonic acid

IAR

Immediate-phase asthmatic response

IgE, Immunoglobulin E

LAR

late-phase asthmatic response

LLAR

Late late-phase asthmatic responses

OA

Ovalbumin

PLA2

Phospholipase A2

PMN

Polymorphonuclear leukocytes

10-Pyrene PC

Pyrene-labeled phospholipids

sRaw

Specific airway resistance

Refereces

  1. Abraham, W. M., Sielczak, M. W., Wanner, A., Perruchoud, A. P., Blinder, L., Stevenson, J.S., Ahmed, A., and Yerger, L.D., Cellular markers of inflammation in the airways of allergic sheep with and without allergen-induced late responses.Am. Rev. Respir. Dis., 138, 1565–1571 (1988).PubMedGoogle Scholar
  2. Andersson, P., Brange, C., von Kogerer, B., Sonmark, B., and Stahre, G., Effect of glucocorticosteroid treatment on oval- bumin-induced IgE-mediated immediate and late allergic response in guinea pig.Int. Arch. Allergy Appl. Immunol., 87, 32–39 (1993).Google Scholar
  3. Aoki, S., Boubekeur, K., Kristersson, A., Morley, J., and Sanjar, S., Is allergic airway hyperreactivity of the guinea pig dependent on eosinophil accumulation in the lung?Br. J. Pharmacol., 94, 365–371 (1988).Google Scholar
  4. Bennett, J. P., Gomperts, B. D., and Wollenweber, E., Inhibitory effects of natural flavonoids on secretion from mast cells and neutrophils.Arzneimittelforschung., 31, 433–437 (1981).PubMedGoogle Scholar
  5. Bousquet, J., Jeffery, P., Busse, W. W., Johnson, M., and Vignola, A. M., Asthma: from bronchoconstriction to airway inflammation and remodeling.Am. J. Respir. Care Med., 161, 1720- 1745 (2000).Google Scholar
  6. Chabot-Fletcher, M. C., Underwood, D. C., Breton, J. J., Adams, J. L., Kagey-Sobotka, A., Griswold, D. E., Marshall, L. A., Sarau, H. M., Winkler, J. D., and Hay, D. W., Pharmacological characterization of SB 202235, a potent and selective 5- lipoxygenase inhibitor: effects in models of allergic asthma.J. Pharmacol. Exp. Ther., 273, 1147–1155 (1995).PubMedGoogle Scholar
  7. Chakravarthy, B. K., Rao, V. Y., Gambhir, S. S., and Gode, K. D., Isolation of Amentoflavone from Selaginella rupestris and its Pharmacological Activity on Central Nervous System, Smooth Muscles and Isolated Frog Heart Preparations.Planta Med., 43, 64–70 (1981).CrossRefGoogle Scholar
  8. Cockcroft, D. W. and Murdok, K. Y., Comparative effect of inhaled salbutamol, sodium cromoglycate and beclomethasone dipropionateon allergen-induced early asthmatic responses, late asthmatic responses and increased bronchial hyperreactivity to histamine.J. Allergy Clin. Immunol., 79, 734–740 (1987).PubMedCrossRefGoogle Scholar
  9. Dahren, S. E., Bjork, J., Hedqvist, P., Hammarstorm, S., and Samuelsson, B., Leukotriens are potent constrictors of human bronchi.Nature, 288, 484–486 (1980).CrossRefGoogle Scholar
  10. DeMonchy, J. G. R., Kauffman, H. F., and Venge, P., Broncho- alveolar eosinophilia during allergen induced late asthmatic reactions.Am. Rev. Respir. Dis., 131, 373–376 (1985).Google Scholar
  11. Dorsch, W., Ettl, M., Hein, G., Scheftner, P., Weber, J., Bayer, T., and Wagner, H., Antiasthmatic effects of onions. Inhibition of platelet-activating factor-induced bronchial obstruction by onion oils.Int. Arch. Allergy Appl. Immunol., 82, 535–536 (1987).PubMedGoogle Scholar
  12. Dorsch, W. and Wagner, H., New antiasthmatic drugs from traditional medicine?Int. Arch. Allergy Appl. Immunol., 94, 262–265 (1991).PubMedGoogle Scholar
  13. Drazen, J. M., Austen, K. F., Lewis, R. A., Clark, D. A., Goto, G., Marfat, A., and Corey, E. J., Comparative airway and vascular activities of leukotrienes C-1 and Din vivo andin vitro.Proc Natl. Acad. Sci. USA., 77, 4354–4358 (1980).PubMedCrossRefGoogle Scholar
  14. Dunn, C. J., Elliot, G. A., Oosteen, J. A., and Richards, I. M., Development of a prolonged eosinophil-rich inflammatory leukocyte infiltration in the guinea-pigs asthmatic response to ovalbumin inhalation.Am. Rev. Respir. Dis., 137, 541–547 (1998).Google Scholar
  15. Fewtrell, C. M. S. and Gomperts, B. D., Effect of flavone inhibitors of transport ATPases on histamine secretion from rat mast cells.Nature, 265, 635–636 (1997).CrossRefGoogle Scholar
  16. Ford-Hutchinson, A. W., Bray, M. A., Doig, M. V., Shipley, M. E., and Smith, M. J., Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes.Nature, 286, 264–265 (1980).PubMedCrossRefGoogle Scholar
  17. Griffiths, G., Trueman, L., Crowther, T., Thomas, B., and Smith, B., Onions-a global benefit to health.Phytother. Res., 16, 603–615 (2002).PubMedCrossRefGoogle Scholar
  18. Gulbenkian, A. R., Fernandez, X., Kreutner, W., Minnicozzi, M., Watnick, A. S., Kung, T., and Egan, R. W., Anaphylactic challenge causes eosinophil accumulation in bronchoalveolar lavage fluid of guinea pigs.Am. Rev. Respir. Dis., 142, 680- 685 (1990).PubMedGoogle Scholar
  19. Gupta, M. B., Bhallar, T. N., Gupta, G. P., and Bhargava, K. P., Anti-inflammatory activity of taxifolin.Jpn. J. Pharmacol., 21, 377–382 (1971).PubMedCrossRefGoogle Scholar
  20. Havsteen, B., Flavonoids, a class of natural products of high pharmacological potency.Biochem. Pharmacol., 32, 1141–1148 (1983).PubMedCrossRefGoogle Scholar
  21. Hedqvist, P., Dahlén, S. E., Gustafsson, L., Hammarström, S., and Samuelsson, B., Biological profile of leukotrienes C4 and D4.Acta. Physiol. Scand, 110, 331–333 (1980).PubMedCrossRefGoogle Scholar
  22. Holroyde, M. C., Altounyan, R. E., Cole, M., Dixon, M., and Elliott, E. V., Bronchoconstriction produced in man by leukotrienes C and D.Lancet, 2, 17–18 (1981).PubMedCrossRefGoogle Scholar
  23. Huston, P. A., Chuch, M. K., Clay, T. P., Miller, P., and Holgate, S. P., Early and late-phase bronchoconstriction after allergen challenge of nonanesthetized guinea pigs. I. The association of disordered airway physiology to leukocyte infiltration.Am. Rev. Respir. Dis., 137, 548–557 (1988).Google Scholar
  24. Hutson, P. A., Holgate, S. T., and Church, M. K., The effect of cromolyn sodium and albuterol on early and late phase bronchoconstriction and airway leukocyte infiltration after allergen challenge of nonanesthetized guinea pigs.Am. Rev. Respir. Dis., 138, 1157–1163 (1988).PubMedGoogle Scholar
  25. Jiang, J. S., Shih, C. M., Wang, S. H., Chen, T. T., Lin, C. N., and Ko, W. C., Mechanisms of suppression of nitric oxide production by 3-O-methylquercetin in RAW 264.7 cells.J. Ethnopharmacol, 103, 281–287 (2006).PubMedCrossRefGoogle Scholar
  26. Kallós, P. andKallós, L., Experimental asthma in guinea pigs revisited.Int. Arch. Allergy Appl. Immunol., 73, 77–85 (1984).PubMedGoogle Scholar
  27. Kane, G. C., Pollice, M., Kim, C. J., Cohn, J., Dworski, R. T., Murray, J. J., Sheller, J. R., Fish, J. E., and Peters, S. P., A controlled trial of the effect of the 5-lipoxygenase inhibitor, zileuton, on lung inflammation produced by segmental antigen challenge in human beings.J. Allergy Clin. Immunol., 97, 646–654 (1996).PubMedCrossRefGoogle Scholar
  28. Kane, G. C., Tollino, M., Pollice, M., Kim, C. J., Cohn, J., Murray, J. J., Dworski, R., Sheller, J., Fish, J. E., and Peters, S. P., Insights into IgE-mediated lung inflammation derived from a study employing a 5-lipoxygenase inhibitor.Prostaglandins, 50, 1–18 (1995).PubMedCrossRefGoogle Scholar
  29. Kim, C. J. and Cho, S. K., Pharmacological activity of flavonoids (III) Struture-Activity relationships of flavonoids in immuno- supression.Arch. Pham. Res., 14, 147–159 (1991).CrossRefGoogle Scholar
  30. Kim, C. J. and Chung, Z. M., Pharmacological activity of flavonoids (I) Relationships of chemical structure of flavonoids and their inhibitory activity of hypersensitivities.Yakhak Hoeji, 34, 348- 364 (1990).Google Scholar
  31. Kim, C. J., Kane, G. C., Zangrilli, J. G., Cho, S. K., Koh, Y. Y., and Peters, S. P., Eosinophils recruited to the lung by segmental antigen challenge show a reduced chemotactic response to leukotriene B4.Prostaglandins, 47, 393–403 (1994).PubMedCrossRefGoogle Scholar
  32. Ko, W. C., Shih, C. M., Chen, M. C., Lai, Y. H., Chen, J. H., Chen, C. M., and Lin, C. N., Suppressive effects of 3-O-methylquer- cetin on ovalbumin-induced airway hyperresponsiveness.Planta Med., 70, 1123–1127 (2004).PubMedCrossRefGoogle Scholar
  33. Ko, W. C., Chen, M. C., Wang, S. H., Lai, Y. H., Chen, J. H., and Lin, C. N., 3-Omethylquercetin more selectively inhibits phosphodiesterase subtype 3.Planta Med., 69, 310–315 (2003).PubMedCrossRefGoogle Scholar
  34. Ko, W. C., Wang, H. L., Lei, C. B., Shih, C. H., Chung, M. I., and Lin, C. N., Mechanisms of relaxant action of 3-O-methyl- quercetin in isolated guinea pig trachea.Planta Med., 68, 30- 35 (2002).PubMedCrossRefGoogle Scholar
  35. Krell, R. D., Osbom, R., Vickery, L., Falcone, K., O’Donnell, M., Gleason, J., Kinzig, C., and Bryan, D., Contraction of isolated airway smooth muscle by synthetic leukotrienes C4 and D4.Prostaglandins, 22, 387–409 (1981).PubMedCrossRefGoogle Scholar
  36. Li, W. G., Zhang, X. Y., Wu, Y. J., and Tian, X., Anti-inflammatory effect and mechanism of proanthocyanidins from grape seeds.Acta Pharmacol. Sin., 22, 1117–1120 (2001).PubMedGoogle Scholar
  37. Matsumoto, T., Ashida, Y., and Tsukuda, R., Pharmacological modulation of immediate and late airway response and leukocyte infiltration in the guinea pig.J. Pharmacol. Exp. Ther., 269, 1236–1244 (1994).PubMedGoogle Scholar
  38. Middleton, E. Jr., The Flavonoids.Trends in Pharmacol., sci., 5, 335–338 (1984).Google Scholar
  39. Middleton, E. Jr. and Drzewiecki, G., Effects of flavonoids and transitional metal cations on antigen-induced histamine release from human basophils.Biochem. Pharmacol., 31, 1449–1453 (1982).PubMedCrossRefGoogle Scholar
  40. Miller, A. L., The etiologies, pathophysiology, and alternative/ complementary treatment of asthma.Altern. Med. Rev., 6, 20–47 (2001).PubMedGoogle Scholar
  41. Morales, M. A., Tortoriello, Meckes, M., Paz, D., and Lozoya, X., Calcium-antagonist effect of quercetin and its relation with the spasmolytic properties ofPsidium guajava L.Arch. Med. Res., 25, 17–21 (1994).PubMedGoogle Scholar
  42. Nishino, H., Iwashima, A., Fujiki, H., and Suginuma, T., Inhibition by quercetin of the promoting effect of teleocidin on skin papilloma formation in mice initiated with 7, 12-dimethylbenz[a]anthracene.Jpn. J. Cancer Res., 75, 113–116 (1984).Google Scholar
  43. Omisore, N. O., Adewunmi, C. O., Iwalewa, E. O., Ngadjui, B. T., Adenowo, T. K., Abegaz, B. M., Ojewole, J. A., and Watchueng, J., Antitrichomonal and antioxidant activities ofDorstenia barteri andDorstenia convexa.Braz. J. Med. Biol. Res., 38, 1087–1094 (2005).PubMedCrossRefGoogle Scholar
  44. Pennock, B. E., Pennock, C. P., Rogers, R. M., Cain, W. A., and Wells, J. H., A noninvasive technique for measurement of changes in specific airway resistance.J. Appl. Physiol., 46, 399–406 (1979).PubMedGoogle Scholar
  45. Pettinari, A., Amici, M., Cuccioloni, M., Angeletti, M., Fioretti, E., and Eleuteri, A. M., Effect of polyphenolic compounds on the proteolytic activities of constitutive and immunoproteasomes.Antioxid. Redox. Signal., 8, 121–129 (2006).PubMedCrossRefGoogle Scholar
  46. Pichurko, B. M., Ingram, R. H. Jr., Sperling, R. I., Lafleur, J. E., Corey, E. J., Austen, K. F., and Drazen, J. M., Localization of the site of the bronchoconstrictor effects of leukotriene C4 compared with that of histamine in asthmatic subjects.Am. Rev. Respir. Dis., 140, 334–339 (1989).PubMedGoogle Scholar
  47. Radvanyi, F., Jordan, L., Russo-Marie, F., and Bon, C., A sensitive and continuous fluorometric assay for phospholipase A2 using pyrene-labeled phospholipids in the presence of serum albumin.Anal. Biochem., 177, 103–109 (1989).PubMedCrossRefGoogle Scholar
  48. Ramesh, M., Rao, Y. N., Rao, A. V., Prabhakar, M. C., Rao, C. S., Muralidhar, N., and Reddy, B. M., Antinociceptive and anti- inflammatory activity of a flavonoid isolated fromCaralluma attenuata.J. Ethnopharmacol., 62, 63–66 (1998).PubMedCrossRefGoogle Scholar
  49. Sanjar, S., Aoki, S., Kristersson, Smith, D., and Moley, J., Antigen challenge induces pulmonary airway eosinophil accumulation and airway hyperreactivity in sensitized guinea- pigs: the effect of anti-asthma drugs.Br. J. Pharmacol., 99, 679–686 (1990).PubMedGoogle Scholar
  50. Shibata, S., Inoue, H., Iwata, S., Ma, R. D., Yu, L J., Ueyama, H., Takayasu, J., Hasegawa, T., Tokuda, H., and Nishino, A., Inhibitory effects of licochalcone A isolated fromGlycyrrhiza inflata root on inflammatory ear edema and tumour promo- tion in mice.Planta Med., 57, 221–224 (1991).PubMedCrossRefGoogle Scholar
  51. Shore, P. A., Burkhalter, A., and Cohn, V. H. Jr., A method for the fluorometric assay of histamine in tissues.J. Pharmacol. Exp. Ther., 127, 182–186 (1959).PubMedGoogle Scholar
  52. Skaltsa, H., Bermejo, P., Lazari, D., Silvan, A. M., Skaltsounis, A. L., Sanz, A., and Abad, M. J., Inhibition of prostaglandin E2 and leukotriene C4 in mouse peritoneal macrophages and thromboxane B4 production in human platelets by flavonoids fromStachys chrysantha andStachys Candida.Biol. Pharm. Bull., 23, 47–53 (2000).PubMedGoogle Scholar
  53. Smith, S. F., Page, C. P., Barnes, C. J., and Flower, R. J., Glu- cocorticosteroids in asthma.Handbook Exp. Pharmacol., 98, 227–252 (1991).Google Scholar
  54. Strath, M., Warren, D. J., and Sanderson, C. J., Detection of eosinophils using an eosinophil peroxidase assay. Its use as an assay for eosinophil differentiation factors.J. Immunol. Methods, 83, 209–215 (1985).PubMedCrossRefGoogle Scholar
  55. Toward, T. J. and Broadley, K. J., Early and late bronchocon- strictions, airway hyper-reactivity, leucocyte influx and lung histamine and nitric oxide after inhaled antigen: effects of dexamethasone and rolipram.Clin. Exp. Allergy, 34, 91–102 (2004).PubMedCrossRefGoogle Scholar
  56. Turner, C. R. and Spannhake, E. W., Acute topical steroid administration blocks mast cell increase and the late asthmatic response of the canine peripheral airways.Am. Rev. Respir. Dis., 141, 421–427 (1990).PubMedGoogle Scholar
  57. Venge, P., Hakansson, L., and Peterson, C., Eosinophil activation in allergic disease.Int. Arch. Allergy Appl. Immunol., 82, 333- 337 (1987).PubMedGoogle Scholar
  58. Villar, A., Gasco, M. A., and Alcaraz, M. J., Anti-inflammatory and anti-ulcer properties of hypolaetin-8-glucoside, a novel plant flavonoid.J. Pharm. Pharmacol., 36, 820–823 (1984).PubMedGoogle Scholar
  59. Wardlaw, A. J., Dunnette, S., Gleich, G. J., Collites, J. V., and Kay, A. B., Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma. Relationship to bronchial hyperreactivity.Am. Rev. Respir. Dis., 137, 62–69 (1988).PubMedGoogle Scholar
  60. Wu, M. J., Wang, L., Ding, H. Y., Weng, C. Y., and Yen, J. H.,Glossogyne tenuifolia acts to inhibit inflammatory mediator production in a macrophage cell line by downregulating LPS- induced NF-kappa B.J. Biomed. Sci., 11, 186–199 (2004).PubMedGoogle Scholar
  61. Yeadon, M., Dougan, F. L., Petrovie, A., Beesley, J. E., and Payne, A. N., Effect of BW B70C, a novel inhibitor of arachidonic acid 5-lipoxygenase, on allergen-induced bron- choconstriction and late-phase lung eosinophil accumulation in sensitised guinea-pigs.Agents Actions, 38, 8–18 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2007

Authors and Affiliations

  • Chan Hun Jung
    • 1
  • Ji Yun Lee
    • 1
  • Chul Hyung Cho
    • 1
  • Chang Jong Kim
    • 1
  1. 1.Department: Division of Pathophysiology and Pharmacology, College of PharmacyChung-Ang UniversitySeoulKorea

Personalised recommendations