Archives of Pharmacal Research

, 30:1575

Attenuation of beryllium induced hepatorenal dysfunction and oxidative stress in rodents by combined effect of gallic acid and piperine

  • Jun-Quan Zhao
  • Guo-Zhen Du
  • You-Cai Xiong
  • Yi-Fu Wen
  • Monika Bhadauria
  • Satendra Kumar Nirala
Article Drug efficacy and safety


We determined a minimum effective dose of gallic acid (3,4,5-trihydroxy benzoic acid; 50 mg/ kg, i.p.) and piperine (10 mg/kg, p.o.) through their therapeutic potential and further evaluated them individually and in combination against beryllium-induced biochemical alterations and oxidative stress consequences in female albino rats. The administration of beryllium altered blood biochemical variables by significantly depleting hemoglobin, albumin and urea, whereas it enhanced bilirubin and creatinine. The release of serum transaminase, lactate dehydroge-nase and γ-glutamyl transpeptidase was significantly greater, and was concomitant with a decrease in serum alkaline phosphatase. A significant increase in lipid peroxidation and a decrease in glutathione, Superoxide dismutase and catalase in the liver and kidney was an indication of oxidative stress due to beryllium exposure. Individual administration of gallic acid and piperine moderately reversed the altered biochemical variables, whereas the combination of these was found to completely reverse the beryllium-induced biochemical alterations and oxidative stress consequences. We concluded that gallic acid exerts a synergistic effect when administered with piperine and provides a more pronounced therapeutic potential in reducing beryllium-induced hepatorenal dysfunction and oxidative stress consequences.

Key words

Beryllium toxicity Gallic acid 3,4,5-Trihydroxy benzoic acid Piperine Biochemical alterations Hepatorenal dysfunction Oxidative stress Combined therapy 


  1. Aebi, H. L., Catalase in vitro.Methods. Enzymol., 105, 121–126 (1984).PubMedCrossRefGoogle Scholar
  2. Anand, K. K., Singh, B., Saxena, A. K., Chandan, B. K., Gupta, V. N., and Bhardwaj, B., 3,4,5-Trihydroxy benzoic acid (gallic acid), the hepatoprotective principle in the fruits ofTerminalia belerica bioassay guided activity.Pharmacol. Res., 36, 315–321 (1997).PubMedCrossRefGoogle Scholar
  3. ATSDR (Agency for Toxic Substances and Disease Registry), 2002.Toxicological profile for beryllium. Atlanta, Georgia,Google Scholar
  4. ATSDR, US department of health and human services, Public Health Service, September 2002.Google Scholar
  5. Bajpai, M., Mishra, A., and Prakash, D., Antioxidants and free radical scavenging activities of some leafy vegetables.Int. J. Food. Nutr., 56, 473–81 (2005).CrossRefGoogle Scholar
  6. Bhadauria, M., Nirala, S. K., and Shukla, S. Propolis protects CYP2E1 enzymatic activities and oxidative stress induced by carbon tetrachloride.Mol. Cell. Biochem., 302, 215–24 (2007).PubMedCrossRefGoogle Scholar
  7. Boukhalfa, H., Lewis, J. G., and Crumbliss, A. L., Beryllium (II) binding to ATP and ADP: Potentiometric determination of thermodynamic constants and implications forin vivo toxicity.Biometals, 17, 105–109 (2004).PubMedCrossRefGoogle Scholar
  8. Brehe, J. E. and Burch, H. B., Enzymatic assay for glutathione.Anal. Biochem., 74, 189–197 (1976).PubMedCrossRefGoogle Scholar
  9. Cai, Y. Z., Luo, Q., Sun, M., and Corke, H., Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer.Life Sci., 74, 2157–2184(2004).PubMedCrossRefGoogle Scholar
  10. Dickinson, D. A., Moellering, D. R., lies, K. E., Patel, R. P., Levonen, A. L., Wigley, A., Darley-Usmar, V. M., and Forman, H. J., Cytoprotection against oxidative stress and the regulation of glutathione synthesis.Biol. Chem., 384, 527–37 (2003).PubMedCrossRefGoogle Scholar
  11. Edmondson H. A., Peters R. L.: Liver. In: Kissane J. H. (Ed.), Andersons pathology Vol 2, C.V. Mosby Co., Torento, St. Louis, pp. 1097–1101, (1985).Google Scholar
  12. Faried, A., Kumia, D., Faried, L. S., Usman, N., Miyazaki, T., Kato, H., and Kuwano, H., Anticancer effect of gallic acid isolated from Indonesian herbal medicine,Phaleria macrocarpa (Scheff.) Boerl. on human cancer cell line.Int. J. Oncol., 30, 605–613 (2007).PubMedGoogle Scholar
  13. Fiske, C. H. and Subbarow, Y., The colorimetric determination of phosphatase.J. Biol. Chem., 66, 375–400 (1925).Google Scholar
  14. Gulcin, I., The antioxidant and radical scavenging activities of black pepper(Piper nigrum) seeds.Int. J. Food. Sci. Nutr., 56, 491–499(2005).PubMedCrossRefGoogle Scholar
  15. Gupta, S. K., Bansal, P., Bhardwaj, R. K., and Velpandian, T., Comparative anti-nociceptive, anti-inflammatory and toxicity profile of nimesulide vs nimesulide and piperine combination.Pharmacol. Res., 41, 657–6 (2000).PubMedCrossRefGoogle Scholar
  16. Hirai, T, Fukushima, K., Kumamoto, K., and Iwahashi, H., Effects of some naturally occurring iron ion chelators onin vitro Superoxide radical formation.Biol. Trace Elem. Res., 108, 77–85 (2005).PubMedCrossRefGoogle Scholar
  17. Hynes, M. J. and Coinceanainn, M. O., The kinetics and mechanisms of the reaction of iron (III) with gallic acid, gallic acid methyl ester and catechin.J. Inorg. Biochem., 85, 131–142 (2001).PubMedCrossRefGoogle Scholar
  18. IIhan, A., Gurel, A., Armutcu, F., Kamisli, S., Iraz, M., Akyol, O., and Ozen, S.,Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain.Clin. Chim. Acta., 340, 153–162 (2004).CrossRefGoogle Scholar
  19. Irmak, M. K., Fadillioglu, E., Gulec, M., Erdogan, H., Yagmurca, M., and Akyol, O., Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits.Cell. Biochem. Fund., 20, 279–283 (2002).CrossRefGoogle Scholar
  20. Khajuria, A., Zutshi, U., and Bedi, K. L., Permeability charActaristics of piperine on oral absorption-an active alkaloid from peppers and a bioavailability enhancer.Indian J. Exp. Biol., 36, 46–50 (1998).PubMedGoogle Scholar
  21. Koul, I. B. and Kapil, A., Evaluation of the liver protective potential of piperine, an active principle of black and long peppers.Planta Med., 59, 413–417 (1993).PubMedCrossRefGoogle Scholar
  22. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J., Protein measurement with Folin’s phenol reagent.J. Biol. Chem., 193, 265–275 (1951).PubMedGoogle Scholar
  23. Meister, A. and Tate, S. S., Glutathione and related gamma-glutamyl compounds: biosynthesis and utilization.Annu. Rev.Biochem., 45, 559–604 (1976).PubMedCrossRefGoogle Scholar
  24. Mishra, P. and Fridovich, I., The role of Superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase.J. Biol. Chem., 247, 3170–3175 (1972).Google Scholar
  25. Nirala, S. K., Bhadauria, M., Mathur, R., and Mathur, A., Amelioration of beryllium induced alterations in hepatorenal biochemistry and ultramorphology by co-administration of tiferron and adjuvants.J. Biomed. Sci., 14, 331–345 (2007a).PubMedCrossRefGoogle Scholar
  26. Nirala, S. K., Bhadauria, M., Mathur, R., and Mathur, A., Influence of a-tocopherol, propolis and piperine on therapeutic potential of tiferron against beryllium induced toxic manifestations.J.Appl. Toxicol., DOI: 10.1002/jat. 1250 (2007b).Google Scholar
  27. Pattanaik, S., Hota, D., Prabhakar, S., Kharbanda, P., and Pandhi, P., Effect of piperine on the steady-state pharmacokinetics of phenytoin in patients with epilepsyPhytother.Res., 20, 683–686 (2006).Google Scholar
  28. Prasad, L., Khan, T. H., Jahangir, T., and Sultana, S., Effect of gallic acid on renal biochemical alterations in male Wistar rats induced by ferric nitriloacetic acid.Hum. Exp. Toxicol., 25, 523–529 (2006).PubMedCrossRefGoogle Scholar
  29. Reitman, S. and Frankel, S., A colorimetric method for determination of serum glutamic oxaloacetic and glutamic pyruvic transaminases.Am. J. Clin. Pathol., 28, 56–63 (1957).PubMedGoogle Scholar
  30. Sakaguchi, S., Sakaguchi, T, Nakamura, I., Aminaka, M., Tanaka, T., and Kudo, Y., Effect of beryllium chloride on porphyrin metabolism in pregnant mice administered by subcutaneous injection.J. Toxicol. Environ. Health-A., 50, 507–517 (1997).CrossRefGoogle Scholar
  31. Sharma, P., Shah, Z., and Shukla, S., Protective effect of Tiron (4,5-dihydroxybenzene-1,3-disulphonic acid disodium salt) against beryllium induced maternal and fetal toxicity in rats.Arch. Toxicol., 76, 442–448 (2002).PubMedCrossRefGoogle Scholar
  32. Sharma, S. K. and Krishna Murti, C. R., Production of lipid peroxides by brain.J. Neurochem., 15, 147–149 (1968).PubMedCrossRefGoogle Scholar
  33. Snedecor, G. W. and Cochran, W. G., Statistical Method, 8th Edition. Iowa State University Press, Ames. Iowa, (1994).Google Scholar
  34. Swarup, H., Arora, S., and Pathak, S. C., Sahli’s acid haematin method for haemoglobin. In: Laboratory techniques in modern biology. Kalyani Publishers: New Delhi, pp 187–189, (1992).Google Scholar
  35. Venugopal, B. and Luckey, T. D., Toxicity of group II Metals. In:Metal toxicity in mammals. Plenum Press, New York, pp. 43–58, (1978).Google Scholar
  36. Weston, A., Snyder, J., McCanlies, E. C., Schuler, C. R., Kreiss, K., and Demchuk, E., Immunogenetic factors in beryllium sensitization and chronic beryllium disease.Mutat. Res., 592, 68–78 (2005).PubMedGoogle Scholar
  37. Wroblewski, F. and La Due, J. S., Colorimetric method for LDH. In: Wootton I.D.P. (Ed.), Microanalysis in Medical Biochemistry, 4th Edn, J. and A. Churchill Ltd. 104 Gloucester Place, pp. 115–118, (1955).Google Scholar
  38. Yeh, C. T. and Yen, G. C., Induction of hepatic antioxidant enzymes by phenolic acids in rats is accompanied by increased levels of multidrug resistance-associated protein3 mRNA Expression.J. Nutr., 136, 11–5 (2006).PubMedGoogle Scholar
  39. Zimmerman, H. J., Hepatic failure. In: Gall E.A. and Mostofi F. K. (Eds), The liver. Williams and Wilkins Co., Baltimore, pp. 384–405, (1973).Google Scholar

Copyright information

© The Pharmaceutical Society of Korea 2007

Authors and Affiliations

  • Jun-Quan Zhao
    • 4
  • Guo-Zhen Du
    • 4
  • You-Cai Xiong
    • 4
  • Yi-Fu Wen
    • 1
  • Monika Bhadauria
    • 2
  • Satendra Kumar Nirala
    • 3
  1. 1.College of Animal Science and TechnologyYunnan Agricultural UniversityKunmingPR China
  2. 2.National Laboratory of Applied Organic ChemistryLanzhou UniversityLanzhouPR China
  3. 3.Institute of Cell Biology, School of Life SciencesLanzhou UniversityLanzhouPR China
  4. 4.MOE Key Laboratory of Arid and Grassland EcologyLanzhou UniversityLanzhouPR China

Personalised recommendations