Archives of Pharmacal Research

, 30:1511 | Cite as

Synthesis of thiazolo[4,5-d]pyrimidine derivatives as potential antimicrobial agents

  • Nargues S. Habib
  • Raafat Soliman
  • Alaa A. El-Tombary
  • Soad A. El-Hawash
  • Omaima G. Shaaban
Article Drug discovery

Abstract

In this study, we report the synthesis and antimicrobial evaluation of several new thiazolo[4,5-d] pyrimidine derivatives, namely 7-substituted amino-5-methyl-3-phenylthiazolo[4,5-d]pyrimi-dine-2 (3H)-thiones4a- e,8,13,15, ethyl 2-cyano-2-(7-substituted-5-methyl-3-phenylthiazolo [4,5-d]-pyrimidin-2(3H)-ylidene)acetates5a- b, 2-(7-substituted-5-methyl-3-phenylthiazolo[4,5-d] pyrimidin-2(3H)-ylidene)malononitriles6a- b, 5-methyl-7-morpholino-3-phenylthiazolo[4,5-d] pyrimidine-2(3H)-one 7, and 7-[4-(1-substituted-5-phenyl-4,5-dihydro-1H-pyrazolin-3-yl)anilino]-5-methyl-3-phenylthiazolo[4,5-d]pyrimidine-2(3H)-thiones10- 12. Some of the tested compounds were more active againstC. albicans thanE. coli andP. aeruginosa, and all were inactive against S.aureus.

Key words

Thiazolo[4,5-d]pyrimidines Pyrazolines Antimicrobial 

References

  1. Abdel-Aal, Eatedal, H., EL-Sabbagh, Osama, I., Youssif, Shaker, and EL-Nabtity, Sameh, M., Synthesis and some pharmacological studies of new benzenesulfonamide derivatives.Monatsh. Chem., 133, 255–266 (2002).CrossRefGoogle Scholar
  2. Badawey, E. S. A. M., Rida, S. M., Hazza, A. A., Fahmy, H. T. Y, and Gohar, Y. M., Potential antimicrobials. II. Synthesis andin vitro antimicrobial evaluation of some thiazolo[4,5-d] pyrimidines.Eur. J. Med. Chem., 28, 97–101 (1993).CrossRefGoogle Scholar
  3. Beck, J. P., Curry, M. A., Chorvat, R. J., Fitzgerald, L. W., Gilligan, P. J., Zaczek, R., and Trainor, G. L., Thiazolo[4,5-d] pyrimidinethiones and -ones as corticotrophin-releasing hormone (CRH-R1) receptor antagonists.Bioorg. Med. Chem. Lett., 9, 1185–1188 (1999), C.A. 131, 58797e (1999).PubMedCrossRefGoogle Scholar
  4. Bekhit, A. A., Fahmy, H. T. Y., Rostom, S. A. F., and Baraka, A. M., Design and synthesis of some substituted 1 H-Pyrazolyl-thiazolo [4,5-d]-pyrimidines as anti-inflammatory-antimicrobial agents.Eur. J. Med. Chem., 38, 27–36 (2003), C.A. 139, 85292h (2003).PubMedCrossRefGoogle Scholar
  5. Fahmy, H. T. Y, Rostom, S. A. F., Saudi, M. N., Zjawiony, J. K., and Robins, D. J., Synthesis andin vitro evaluation of the anticancer activity of novel fluorinated thiazolo[4,5-d]pyrimi-dines.Arch. Pharm Pharm. Med. Chem., 3, 1–10 (2003).Google Scholar
  6. Farghaly, A. M., Bekhit, A. A., and Park, J. Y., Design and synthesis of some oxadiazolyl, thiadiazolyl, thiazolidinyl, and thiazolyl derivatives of 1H-pyrazole as anti-inflammatory antimicrobial agents.Arch. Pharm. (Weinheim Ger.), 333, 53–57 (2000).CrossRefGoogle Scholar
  7. Farghaly, A. M., Soliman, F. S. G., El-Semary, M. M. A., and Rostom, Sh. A. F., Polysubstituted pyrazols, part 4: Synthesis, antimicrobial and anti-inflammatory activity of some pyrazoles.Pharmazie, 56, 28–32 (2001).PubMedGoogle Scholar
  8. Farghaly, A. M., Soliman, R., Khalil, M. A., Bekhit, A. A., and Bekhit, A. El-Din A., Thioglycolic acid and pyrazole derivatives of 4(3H)- quinazolinone: Synthesis and antimicrobial evaluation.Boll. Chim. Farm., 141, 372–378 (2002).PubMedGoogle Scholar
  9. Garcia-Lopez, M. T., Herranz, R., and Alonso, G., Alkylating nucleosides. 2. Synthesis and cytostatic activity of bromo-methylpyrazole and pyrazole nitrogen mustard nucleosides.J. Med. Chem., 22, 807–811 (1979).PubMedCrossRefGoogle Scholar
  10. Gewald, K., Heterocycles from CH-acidic nitriles. VI. Reaction of methylene-active nitriles with mustard oils and sulfur.J. Prakt. Chem., 32, 26–30 (1966).CrossRefGoogle Scholar
  11. Gewald, K., Hain, U., and Hartung, P., Chemistry of 4-amino-thiazoline-2-thiones.Monatsh. Chem., 112, 1393–1404 (1981).CrossRefGoogle Scholar
  12. Jain, S. R. and Kar, A., AntibActarial activity of some essential oils and their combinations.Planta Med., 20, 118–123 (1971).PubMedCrossRefGoogle Scholar
  13. Philpis, J. P., Breese, R., and Barrall, E. M., Styryl derivatives of 8-quinolinol.J. Org. Chem., 24, 1104–1106 (1959).CrossRefGoogle Scholar
  14. Revankar, G. R., Ojwang, J. O., Mustain, S. D., Rando, R. F., De Clercq, E., Huffman, J. H., Drach, J. C., Sommadossi, J.-P., and Lewis, A. F., Thiazolo[4,5-d]pyrimidines. Part II. Synthesis and anti- human cytomegalovirus activityin vitro of certain acyclonucleosides and acyclonucleotides derived from the guanine analog 5-aminothiazolo- [4,5-d]pyrimidine-2,7 (3H,6H)-dione.Antiviral Chem. Chemother, 9, 53–63 (1998), C.A. 128, 225740c (1998).Google Scholar
  15. Scott, A. C., Laboratory control of antimicrobial Therapy. In: Colle, J. G., Duguid, J. P., Fraser, A. G., Marmion, B. P., Mackie and MacCartney Practical Medical Microbiology Churchil Livingstone, 13th edition, 2, 161–181 (1989).Google Scholar
  16. Solmons, T. W., Graham, Fundamentals of Organic Chemistry, 4th ed. New York Murphy, P. 701–702, (1994).Google Scholar

Copyright information

© The Pharmaceutical Society of Korea 2007

Authors and Affiliations

  • Nargues S. Habib
    • 1
  • Raafat Soliman
    • 1
  • Alaa A. El-Tombary
    • 1
  • Soad A. El-Hawash
    • 1
  • Omaima G. Shaaban
    • 1
  1. 1.Pharmaceutical Chemistry Department, Faculty of PharmacyAlexandria UniversityAlexandriaEgypt

Personalised recommendations