Archives of Pharmacal Research

, Volume 26, Issue 7, pp 559–563 | Cite as

Epigallocatechin gallate prevents autoimmune diabetes induced by multiple low doses of streptozotocin in mice

  • Eun -Kyung Song
  • Hyeon Hur
  • Myung -Kwan HanEmail author


Cytokines produced by immune cells infiltrating pancreatic islets have been incriminated as important mediators of β-cell destruction in insulin-dependent diabetes mellitus. In non insulin-dependent diabetes, cytokines are also associated with impaired β-cell function in high glucose condition. By the screening of various natural products blocking β-cell destruction, we have recently found that epigallocatechin gallate (EGCG) can prevent thein vitro destruction of RINm5F cell, an insulinoma cell line, that is induced by cytokines. In that study we suggested that EGCG could prevent cytokine-induced β-cell destruction by down-regulation of nitric oxide synthase (NOS) through inhibition of NF-κB activation. Here, to verify thein vivo antidiabetogenic effect of EGCG, we examined the possibility that EGCG could also prevent the experimental autoimmune diabetes induced by the treatment of multiple low doses of streptozotocin (MLD-STZ), which is recognized as an inducer of type I autoimmune diabetes. Administration of EGCG (100 mg/day/kg for 10 days) during the MLD-STZ induction of diabetes reduced the increase of blood glucose levels caused by MLD-STZ.Ex vivo analysis of β-islets showed that EGCG downregulates the MLD-STZ-induced expression of inducible NOS (iNOS). In addition, morphological examination showed that EGCG treatment ameliorated the decrease of islet mass induced by MLD-STZ. In combination these results suggest that EGCG could prevent the onset of MLD-STZ-induced diabetes by protecting pancreatic islets. Our results therefore revealed the possible therapeutic value of EGCG for the prevention of diabetes mellitus progression.

Key words

Epigallocatechin gallate Autoimmune diabetes Inducible nitric oxide synthase Multiple low doses of streptozotocin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad, F., Khalid, P., Khan, M. M., Rastogi, A. K., and Kidwai, J. R., Insulin like activity in (-) epicatechin.Acta Diabetol. Lat., 26, 291–300 (1989).PubMedCrossRefGoogle Scholar
  2. An, N. H., Han, M. K., Um, C., Park, B. H., Park, B. J., Kim, H. K., and Kim, U. H., Significance of ecto-cyclase activity of CD38 in insulin secretion of mouse pancreatic islet cells.Biochem. Biophys. Res. Commun., 282, 781–786 (2001).PubMedCrossRefGoogle Scholar
  3. Broadhurst, C. L., Polansky, M. M., and Anderson, R. A., Insulin-like biological activity of culinary and medicinal plant aqueous extractsin vitro.J. Agric. Food Chem., 48, 849–852 (2000).PubMedCrossRefGoogle Scholar
  4. Han, M. K., Epigallocatechin gallate, a constituent of green tea, suppresses (Ed- confirm versus original title) cytokine-induced pancreatic β-cell damage.Exp. Mol. Med., 35, 136–139 (2003).PubMedGoogle Scholar
  5. Kao, Y. H., Hiipakka, R. A., and Liao, S., Modulation of endocrine systems and food intake by green tea epigallocatechin gallate.Endocrinology, 141, 980–987 (2000).PubMedCrossRefGoogle Scholar
  6. Katiyar, S. K. and Mukhtar, H., Tea antioxidants in cancer chemoprevention.J. Cell. Biochem. Suppl., 27, 59–67 (1997).PubMedCrossRefGoogle Scholar
  7. Kolb-Bachofen, V., Epstein, S., Kiesel, U., and Kolb, H., Low-dose streptozocin-induced diabetes in mice. Electron microscopy reveals single-cell insulitis before diabetes onset.Diabetes, 37, 21–27 (1988).PubMedCrossRefGoogle Scholar
  8. Kumar, P., Delfino, V., McShane, P., Gray, D. W., and Morris, P. J., Rapid assessment of islet cell viability by MTT assay after cold storage in different solutions.Transplant. Proc., 26, 814 (1994).PubMedGoogle Scholar
  9. Like, A. A. and Rossini, A. A., Streptozotocin-induced pancreatic insulitis: a (Ed- confirm) new model of diabetes mellitus.Science, 193, 415–417 (1976).PubMedCrossRefGoogle Scholar
  10. Lukic, M. L., Stosic-Grujicic, S., and Shahin, A., Effector mechanisms in low-dose streptozotocin-induced diabetes.Dev. Immunol., 6, 119–128 (1998).PubMedCrossRefGoogle Scholar
  11. Maedler, K., Sergeev, P., Ris, F., Oberholzer, J., Joller-Jemelka, H. I., Spinas, G. A., Kaiser, N., Halban, P. A., and Donath, M. Y., Glucose-induced beta cell production of IL-1β contributes to glucotoxicity in human pancreatic islets.J. Clin. Invest., 110, 851–860 (2002).PubMedGoogle Scholar
  12. Masiello, P., Broca, C., Gross, R., Roye, M., Manteghetti, M., Hillaire-Buys, D., Novelli, M., and Ribes, G., Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide.Diabetes, 47, 224–229 (1998).PubMedCrossRefGoogle Scholar
  13. Mensah-Brown, E. P., Stosic Grujicic, S., Maksimovic, D., Jasima, A., Shahin, A., and Lukic, M. L., Downregulation of apoptosis in the target tissue prevents low-dose streptozotocin-induced autoimmune diabetes.Mol. Immunol., 38, 941–946 (2002).PubMedCrossRefGoogle Scholar
  14. Nakayama, M., Suzuki, K., Toda, M., Okubo, S., Hara, Y., and Shimamura, T., Inhibition of the infectivity of influenza virus by tea polyphenols.Antiviral Res., 21, 289–299 (1993).PubMedCrossRefGoogle Scholar
  15. Rabinovitch, A. and Suarez-Pinzon, W. L., Cytokines and their roles in pancreatic islet β-cell destruction and insulin-dependent diabetes mellitus.Biochem. Pharmacol., 55, 1139–1149 (1998).PubMedCrossRefGoogle Scholar
  16. Ryu, J. K., Kim, D. J., Lee, T., Kang, Y. S., Yoon, S. M., and Suh, J. K., The role of free radical in the pathogenesis of impotence in streptozotocin-induced diabetic rats.Yonsei Med. J., 44, 236–241 (2003).PubMedGoogle Scholar
  17. Stosic-Grujicic, S., Maksimovic, D., Badovinac, V., Samardzic, T., Trajkovic, V., Lukic, M., and Mostarica Stojkovic, M., Antidiabetogenic effect of pentoxifylline is associated with systemic and target tissue modulation of cytokines and nitric oxide production.J. Autoimmun., 16, 47–58 (2001).PubMedCrossRefGoogle Scholar
  18. Tannous, M., Amin, R., Popoff, M. R., Fiorentini, C., and Kowluru, A., Positive modulation by Ras of interleukin-1β-mediated nitric oxide generation in insulin-secreting clonal β (HIT-T15) cells.Biochem. Pharmacol., 62, 1459–1468 (2001).PubMedCrossRefGoogle Scholar
  19. Tsuji, K., Taminato, T., Usami, M., Ishida, H., Kitano, N., Fukumoto, H., Koh, G., Kurose, T., Yamada, Y., and Yano, H., Characteristic features of insulin secretion in the streptozotocin-induced NIDDM rat model.Metabolism, 37, 1040–1044 (1988).PubMedCrossRefGoogle Scholar
  20. Yang, C. S. and Wang, Z. Y., Tea and cancer.J. Nat. Cancer Inst., 85, 1038–1049 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2003

Authors and Affiliations

  1. 1.Department of Microbiology & ImmunologyChonbuk national University Medical SchoolChonjuKorea

Personalised recommendations