Archives of Pharmacal Research

, Volume 26, Issue 5, pp 375–382 | Cite as

effect of ginsenoside Rd on nitric oxide system induced by lipopolysaccharide plus TNF-α in C6 rat glioma cells

  • Seong-Soo Choi
  • Jin-Koo Lee
  • Eun-Jung Han
  • Ki-Jung Han
  • Han-Kyu Lee
  • Jongho Lee
  • Hong-Won Suh
Research Articles Articles

Abstract

Effects of ginsenosides on nitric oxide (NO) production induced by lipopolysaccharide plus TNF-a (LNT) were examined in C6 rat glioma cells. Among several ginsenosides, ginsenoside Rd showed a complete inhibition against LNT-induced NO production. Ginsenoside Rd attenu-ated LNT-induced increased phosphorylation of ERK. Among several immediate early gene products, only Jun B and Fra-1 protein levels were increased by LNT, and ginsenoside Rd attenuated Jun B and Fra-1 protein levels induced by LNT. Furthermore, LNT increased AP-1 DNA binding activities, which were partially inhibited by ginsenoside Rd. Our results suggest that ginsenoside Rd exerts an inhibitory action against NO production via blocking phosphory-lation of ERK, in turn, suppressing immediate early gene products such as Jun B and Fra-1 in C6 glioma cells.

Key words

Ginsenoside Rd Lipopolysaccharide TNF-α Nitric oxide C6 glioma cell ERK Jun B Fra-1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angel, P. and Karin, M., The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation.Biochim. Biophys. Acta, 1072, 129–157 (1991).PubMedGoogle Scholar
  2. Bhat, N. R., Zhang, P., Lee, J. C., and Hogan, E. L., Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures.J. Neurosci., 18, 1633–1641 (1998).PubMedGoogle Scholar
  3. Bo, L., Dawson, T. M., Wesselingh, S., Mork, S., Choi, S., Kong, P. A., Hanley, D., and Trapp, B. D., Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains.Ann. Neurol., 36, 778–786 (1994).PubMedCrossRefGoogle Scholar
  4. Bredt, D. S. and Snyder, S. H., Isolation of nitric oxide synthase, a calmodulin requiring enzyme.Proc. Natl. Acad. Sci. U.S.A., 87, 682–685 (1990).PubMedCrossRefGoogle Scholar
  5. Busse, R. and Mulsch, A., Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin.FEBS Lett., 265, 133–136 (1990).PubMedCrossRefGoogle Scholar
  6. Chan, E. D. and Riches, D. W., IFN-gamma + LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38 (mapk) in a mouse macrophage cell line.Am. J. Physiol. Cell Physiol., 280, C441–450 (2001).Google Scholar
  7. Chomozynski, P. and Sacchi, N., Single-step method of RNA isolation by acidic guanidium thiocyanate-phenol-chloroform extraction.Anal. Biochem., 162, 156–159 (1987).Google Scholar
  8. Cross, A. H., Misko, T. P., Lin, R. F., Hickey, W. F., Trotter, J. L., and Tilton, R. G., Aminoguanidine, an inhibitor of inducible nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice.J. Clin. Invest, 93, 2684–2690 (1994).PubMedCrossRefGoogle Scholar
  9. Danielson, P. E., Forss-Peter, S., Brow, M. A., Calavetta, L., Douglass, J., Milner, R. J., and Sutchliffe, J. G., p1B15: a cDNA clone of the rat mRNA encoding cyclophilin.DNA, 7, 261–267 (1988).PubMedCrossRefGoogle Scholar
  10. Dignam, J. D., Lebovitz, R. M., and Roeder, R. G., Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei.Nucleic Acids Res., 11, 1475–1489 (1983).PubMedCrossRefGoogle Scholar
  11. Feinstein, D. L., Galea, E., Roberts, S., Berquist, H., Wang, H., and Reis, D. J., Induction of nitric oxide synthase in rat C6 glioma cells.J. Neurochem., 62, 315–321 (1994).PubMedCrossRefGoogle Scholar
  12. Friedl, R., Moeslinger, T., Kopp, B., and Spieckermann, P. G., Stimulation of nitric oxide synthesis by the aqueous extract of Panax ginseng root in RAW 264.7 cells.Br. J. Pharmacol., 134, 1663–1670 (2001).PubMedCrossRefGoogle Scholar
  13. Galea, E., Feinstein, D. L., and Reis, D. J., Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures.Proc. Natl. Acad. Sci. U.S.A., 89, 10945–10949 (1992).PubMedCrossRefGoogle Scholar
  14. Galea, E., Reis, D. J., and Feinstein, D. L., Cloning and expression of inducible nitric oxide synthase from rat astrocytes.J. Neurosci. Res., 37, 406–414 (1994).PubMedCrossRefGoogle Scholar
  15. Garthwaite, J., Glutamate, nitric oxide and cell-cell signalling in the nervous system.Trends Neurosci., 14, 60–67 (1991).PubMedCrossRefGoogle Scholar
  16. Gillis, C. N., Panax ginseng pharmacology: a nitric oxide link?Biochem. Pharmacol., 54, 1–8 (1997).PubMedCrossRefGoogle Scholar
  17. Hooper, D. C., Bagasra, O., Marini, J. C., Zborek, A., Ohnishi, S. T., Kean, R., Champion, J. M., Sarker, A. B., Bobroski, L., Farber, J. L., Akaike, T., Maeda, H., and Koprowski, H., Prevention of experimental allergic encephalomyelitis by targeting nitric oxide and peroxynitrite: implications for the treatment of multiple sclerosis. Proc.Natl. Acad. Sci. U.S.A., 94, 2528–2533 (1997).CrossRefGoogle Scholar
  18. Hu, S., Sheng, W. S., Peterson, P. K., and Chao, C. C., Differential regulation by cytokines of human astrocyte nitric oxide production.Glia, 15, 491–494 (1995).PubMedCrossRefGoogle Scholar
  19. Jaffrey, S. R. and Snyder, S. H., Nitric oxide: a neural messenger.Ann. Rev. Cell. Dev. Biol., 11, 417–440 (1995).CrossRefGoogle Scholar
  20. Kang, S. Y., Kim, S. H., Schini, V. B., and Kim, N. D., Dietary ginsenosides improve endothelium-dependent relaxation in the thoracic aorta of hypercholesterolemic rabbit.Gen. Pharmacol., 26, 483–487 (1995).PubMedGoogle Scholar
  21. Kim, Y. C., Kim, S. R., Markelonis, G. J., and Oh, T. H., Ginsenosides Rb1 and Rg3 protect cultured rat cortical cells from glutamate-induced neurodegeneration.J. Neurosci. Res., 53, 426–432 (1998).PubMedCrossRefGoogle Scholar
  22. Koprowski, H., Zheng, Y. M., Heber-Katz, E., Fraser, N., Rorke, L., Fu, Z. F., Hanlon, C., and Dietzschold, B.,In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases.Proc. Natl. Acad. Sci. U.S.A., 90, 3024–3027 (1993). [Published erratum appears inProc. Natl. Acad. Sci. U.S.A. 90, 5378.]PubMedCrossRefGoogle Scholar
  23. Laemmli, U., Cleavage of structure proteins during the assembly of the head of bacteriophage T4.Nature, 227, 680–685 (1970).PubMedCrossRefGoogle Scholar
  24. Lee, J. K., Choi, S. S., Won, J. S., and Suh, H. W., The Regulation of inducible nitric oxide synthase gene expression induced by lipopolysaccharide plus tumor necrosis factor-α in C6 cells; the involvements of AP-1 and NFκB.Life Sci., in press (2003).Google Scholar
  25. Marietta, M. A., Nitric oxide synthase: function and mechanism.Adv. Exp. Med. Biol., 338, 281–284 (1993).Google Scholar
  26. Merrill, J. E., Ignarro, L. J., Sherman, M. P., Melinek, J., and Lane, T. E., Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide.J. Immunol., 151, 2132–2141 (1993).PubMedGoogle Scholar
  27. Mitrovic, B., Ignarro, L. J., Montestruque, S., Smoll, A., and Merrill, J. E., Nitric oxide as a potential pathological mechanism in demyelination: its differential effects on primary glial cellsin vitro.Neuroscience, 61, 575–585 (1994).PubMedCrossRefGoogle Scholar
  28. Nathan, C., Nitric oxide as a secretory product of mammalian cells.FASEB J., 6, 3051–3064 (1992).PubMedGoogle Scholar
  29. Pahan, K., Namboodiri, A. M., Sheikh, F. G., Smith, B. T., and Singh, I., Increasing cAMP attenuates induction of inducible nitric-oxide synthase in rat primary astrocytes.J. Biol. Chem., 272, 7786–7791 (1997b).PubMedCrossRefGoogle Scholar
  30. Pahan, K., Sheikh, F. G., Khan, M., Namboodiri, A. M., and Singh, I., Sphingomyelinase and ceramide stimulate the expression of inducible nitric-oxide synthase in rat primary astrocytes.J. Biol. Chem., 273, 2591–2600 (1998).PubMedCrossRefGoogle Scholar
  31. Pahan, K., Sheikh, F. G., Namboodiri, A. M., and Singh, I., Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages.J. Clin. Invest., 100, 2671–2679 (1997a).PubMedCrossRefGoogle Scholar
  32. Palmer, R. M., Ferrige, A. G., and Moncada, S., Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor.Nature, 327, 524–526 (1987).PubMedCrossRefGoogle Scholar
  33. Park, Y. C., Lee, C. H., Kang, H. S., Kim, K. W., Chung, H. T., and Kim, H. D., Ginsenoside-Rh1 and Rh2 inhibit the induction of nitric oxide synthesis in murine peritoneal macrophages.Biochem. Mol. Biol. Int., 40, 751–757 (1996).PubMedGoogle Scholar
  34. Radomski, M. W., Palmer, R. M., and Moncada, S., The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide.Br. J. Pharmacol., 92, 639–646 (1987).PubMedGoogle Scholar
  35. Schreck, R., Rieber, P., and Baeuerle, P. A., Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1.EMBOJ., 10, 2247–2258 (1991).Google Scholar
  36. Simmons, M. L. and Murphy, S., Roles for protein kinases in the induction of nitric oxide synthase in astrocytes.Glia, 11, 227–2234 (1994).PubMedCrossRefGoogle Scholar
  37. Takahashi, N., Hayano, T., and Suzuki, M., Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin.Nature, 337, 473–475 (1989).PubMedCrossRefGoogle Scholar
  38. Tamaoki, J., Nakata, J., Kawatani, K., Tagaya, E., and Nagai, A., Ginsenoside-induced relaxation of human bronchial smooth muscle via release of nitric oxide.Br. J. Pharmacol., 130, 1859–1864 (2000).PubMedCrossRefGoogle Scholar
  39. Thanos, D. and Maniatis, T., NF-kappa B: a lesson in family values.Cell, 80, 529–532 (1995).PubMedCrossRefGoogle Scholar
  40. Towbin, H., Staehelin, T., and Gordon, J., Electrophoretic transfer of proteins from polyacrylamide gels to nitocellulose sheets: Procedure and some applications.Proc. Natl. Acad. Sci. U.S.A., 76, 4350–4354 (1979).PubMedCrossRefGoogle Scholar
  41. Zhang, H., Chen, X., Teng, X., Snead, C., and Catravas, J. D., Molecular cloning and analysis of the rat inducible nitric oxide synthase gene promoter in aortic smooth muscle cells.Biochem. Pharmacol., 55, 1873–1880 (1998).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2003

Authors and Affiliations

  • Seong-Soo Choi
    • 1
  • Jin-Koo Lee
    • 1
  • Eun-Jung Han
    • 1
  • Ki-Jung Han
    • 1
  • Han-Kyu Lee
    • 1
  • Jongho Lee
    • 1
  • Hong-Won Suh
    • 1
  1. 1.Department of Pharmacology, College of Medicine and Institute of Natural MedicineHallym UniversityChunchonKorea

Personalised recommendations