Advertisement

Inhibitory effects of luteolin isolated fromixeris sonchifolia hance on the proliferation of hepg2 human hepatocellular carcinoma cells

  • Yee Su Bog
  • Lee Jung Hwa
  • Chung Hae Young
  • Im Kwang Sik
  • Bae Song Ja
  • Choi Jae Soo
  • Kim Nam DeukEmail author
Research Articles Articles

Abstract

We investigated the anti-proliferative effects of luteolin and apigenin, isolated fromIxeris sonchifolia Hance, on HepG2 human hepatocellular carcinoma cells. In MTT assay luteolin showed more efficient anti-proliferative effects on cells than apigenin did. According to propidium iodide staining and flow cytometry studies, we postulated that these effects might be a result of cell cycle arrest. Hence we examined the changes of protein expressions related to cell cycle arrest. Western blotting data demonstrated that the down-regulated expression of CDK4 was correlated to the increase of p53 and CDK inhibitor p2-1WAF1/cIp1 protein. These data suggest that luteolin may have potential as an anti-cancer agent.

Key words

Luteolin Apigenin Ixeris sonchifolia H. HepG2 cells Cell cycle arrest 

References

  1. Bae, S. J., Kim, N. H., Koh, J. B., Roh, S. B., and Jung, B. M., Effects of godulbaegi (Ixeris sonchifolia H.) diets on enzyme activities of CCI4 induced hepatotoxicity in rats.J. Korean Nutr. Soc., 30, 19–24 (1997a).Google Scholar
  2. Bae, S. J., Kim, N. H., Ha, B. J., Jung, B. M., and Roh, S. B., Effects of godulbaegi leaf extracts on CCI4-induced hepatotoxicity in rats.J. Korean Soc. Food Sci. Nutr., 26, 137–143 (1997b).Google Scholar
  3. Bae, S. J., Kim, N. H., Roh, S. B., and Jung, B. M., The effects of godulbaegi extracts on the fluidity of phospholipid liposomes by DSC.J. Korean Soc. Food Sci. Nutr., 27, 518–524 (1998a).Google Scholar
  4. Bae, S. J., Roh, S. B., and Jung, B. M., Effects of godulbaegi extracts on the stability and fluidity of phospholipid liposomal membranes.J. Korean Soc. Food Sci. Nutr., 27, 508–517 (1998b).Google Scholar
  5. Casagrande, F. and Darbon, J. M., Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: regulation of cyclin-dependent kinases CDK2 and CDK1.Biochemical Pharmacology, 61, 1205–1215 (2000).CrossRefGoogle Scholar
  6. Chiu, H. F., Lin, C. C., Yang, C. C., and Yang, R., The pharmacological and pathological studies on several hepatic protective crude drugs from Taiwan (II).Am. J. Chin. Med., 17, 17–30 (1989).PubMedCrossRefGoogle Scholar
  7. Chung, H. S., Cytotoxic triterpenoids on human cancer cell lines fromIxeris sonchifolia.Food Sci. Biotechnol., 9, 364–367 (2000).Google Scholar
  8. Chung, H. S., Guaianolide sesquiterpene lactone fromIxeris sonchifolia Hance with cytotoxicity in cultured human stomach and colon cancer cell lines.Food Sci. Biotechnol., 10, 433–436 (2001).Google Scholar
  9. El-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W., and Vogelstein, B., WAF1, a potential mediator of p53 tumor suppression.Cell, 75, 817–825 (1993).PubMedCrossRefGoogle Scholar
  10. Elledge, S. J., Cell cycle checkpoints: preventing an identity crisis.Science, 274, 1664–1672 (1996).PubMedCrossRefGoogle Scholar
  11. Gupta, S., Afaq, F., and Mukhtar, H., Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells.Biochem. Biophys. Res. Commun., 287, 914–920 (2001).PubMedCrossRefGoogle Scholar
  12. Hartwell, L. H. and Kastan, M. B., Cell cycle control and cancer.Science, 266, 1821–1828 (1994).PubMedCrossRefGoogle Scholar
  13. Hirano, T., Oka, K., and Akiba, M., Antiproliferative effects of synthetic and naturally occurring flavonoids on tumor cells of the human breast carcinoma cell line, ZR-75-1.Res. Commun. Chem. Pathol. Pharmacol., 64, 69–78 (1989).PubMedGoogle Scholar
  14. Im, E. O., Choi, Y. H., Paik, K. J., Suh, H., Jin, Y., Kim, K. W., Yoo, Y. H., and Kim, N. D., Novel bile acid derivatives induce apoptosis via a p53-independent pathway in human breast carcinoma cells.Cancer Lett., 163, 83–93 (2001)PubMedCrossRefGoogle Scholar
  15. Knowles, L. M., Zigross, D. A., Tauber, R. A., Hightower, C., and Milne, J. A., Flavonoids suppress androgen-independent human prostate tumor proliferation.Nutr. Cancer., 38, 116–122 (2000).PubMedCrossRefGoogle Scholar
  16. Lin, S. C., Lin, C. C., Lin, Y. H., and Yao, C. J., Hepatoprotective effects of Taiwan folk medicine:Ixeris chinensis (Thunb.) Nak. on experimental liver injuries.Am. J. Chin. Med., 22, 243–254 (1994).PubMedCrossRefGoogle Scholar
  17. Li, Y. C., Hung, C. R., Yeh, F. T., Lin, J. P., and Chung, J. G., Luteolin-inhibited arylamine N-acetyltransferase activity and DNA-2-aminofluorene adduct in human and mouse leukemia cells.Food Chem. Toxicol., 39, 641–647 (2001).PubMedCrossRefGoogle Scholar
  18. Lu, K. L., Chang, Y. S., Ho, L. K., Lin, C. C., and Tsai, C. C., The evaluation of the therapeutic effect of tao-shang-tsao on alpha-naphthylisothiocyanate and carbon tetrachloride-induced acute liver damage in rats.Am. J. Chin. Med., 28, 361–370 (2000).PubMedCrossRefGoogle Scholar
  19. Morgan, D. O., Principles of CDK regulation.Nature, 374, 131–134 (1995).PubMedCrossRefGoogle Scholar
  20. Park, S. S., Studies on the constituents with biological activities ofIxeris sonchifolia Hance.Korean Biochem. J., 10, 241–252 (1977).Google Scholar
  21. Pettit, G. R., Hoard, M. S., Doubek, D. L., Schmidt, J. M., Pettit, R. K., Tackett, L. P., and Chapuis, J. C., Antineoplastic agents 338. The cancer cell growth inhibitory. Constistituents ofTerminalia arjuna (Combretaceae).J. Ethnopharmacol., 53, 57–63 (1996).PubMedGoogle Scholar
  22. Pike, B. R., Zhao, X., Newcomb, J. K., Wang, K. K., Posmantur, R. M., and Hayes, R. L., Temporal relationships between de novo protein synthesis, calpain and caspase 3-like protease activation, and DNA fragmentation during apoptosis in septohippocampal cultures.J. Neurosci. Res., 52, 505–520 (1998).PubMedCrossRefGoogle Scholar
  23. Post, J. F. and Varma, R. S., Growth inhibitory effects of bioflavonoids and related compounds on human leukemic CEM-C1 and CEM-C7 cells.Cancer Lett., 24, 207–213 (1992).CrossRefGoogle Scholar
  24. Sherr, C. J. and Roberts, J. M., Inhibitors of mammalian G1 cyclin-dependent kinases.Genes Dev., 9, 1149–1163 (1995).PubMedCrossRefGoogle Scholar
  25. Sherr, C. J., Cancer cell cycles.Science, 274, 1672–1677 (1996).PubMedCrossRefGoogle Scholar
  26. Shimoi, K., Saka, N., Kaji, K., Nazawa, R., and Kinae, N., Metabolic fate of luteolin and its functional activity at focal site.Biofactors, 12, 181–186 (2000).PubMedGoogle Scholar
  27. Shin, S. C., Studies on the chemical components of wild Korean lettuce (Youngia sonchifolia Max.).J. Korean Agric. Chem. Soc., 31, 134–137 (1988).Google Scholar
  28. Shin, S. C., Exploitation of the biologically active components inYoungia sonchifolia Max.J. Korean Agric. Chem. Soc., 36, 261–266 (1993).Google Scholar
  29. Suh, J., Jo, Y., Kim, N. D., Bae, S. J., and Im, K. S., (2002) Cytotoxic constituents of the leaves ofIxeris sonchifolia.Arch. Pharm. Res., 25, 289–292 (2002).PubMedGoogle Scholar
  30. Tada, H., Shiho, O., Kuroshima, K., Koyama, M., and Tsukamoto, K., An improved colorimetric assay for interleukin 2.J. Immunol. Methods, 93, 157–165 (1986).PubMedCrossRefGoogle Scholar
  31. Wang, I. K., Lin-Shiau, S. Y. and Lin, J. K., Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukemia HL-60 cells.Eur. J. Cancer, 35, 1517–1525 (1999).PubMedCrossRefGoogle Scholar
  32. Wang, W., Heideman, L., Chung, C. S., Pelling, J. C., Koehler, K. J., and Birt, D. F., Cell-cycle arrest at G2/M and growth inhibition by apigenin in human colon carcinoma cell lines.Mol. Carcinog., 28, 102–110 (2000).PubMedCrossRefGoogle Scholar
  33. Yin, F., Giuliano, A. E., and Van Herle, A. J., Growth inhibitory effects of flavonoids in human thyroid cancer cell lines.Thyroid, 9, 369–376 (1999a).PubMedCrossRefGoogle Scholar
  34. Yin, R., Giuliano, A. E., and Van Herle, A. J., Signal pathways involved in apigenin inhibition of growth and induction of apoptosis of human anaplastic thyroid cancer cells (ARO).Anticancer Res., 19, 4297–4303 (1999b).PubMedGoogle Scholar
  35. Yin, R., Giuliano, A. E., Law, R. E., and Van Herle, A. J., Apigenin inhibits growth and induces G2/M arrest by modulating cyclin-CDK regulators and ERK MAP kinase activation in breast carcinoma cells.Anticancer Res., 21, 413–420 (2001).PubMedGoogle Scholar
  36. Young, H. S., Choi, J. S., and Lee, J. H., Further study on the anti-hypercholesterolemic effect ofIxeris sonchifolia.Korean J. Pharmacog., 23, 73–76 (1992a).Google Scholar
  37. Young, H. S., Im, K. S., and Choi, J. S., The pharmaco-chemical study on the plant ofIxeris spp. 2. Flavonoids and free amino acid composition ofIxeris sonchifolia.J. Korean Soc. Food Nutr., 21, 296–301 (1992b).Google Scholar
  38. Young, H. S., Seo, S. S., Lee, K. H., Lee, J. H., and Choi, J. S., The pharmacochemical study on the plant ofIxeris spp. 1. Anti-hypercholesterolemic effect ofIxeris sonchifolia.J. Korean Soc. Food Nutr., 21, 291–295 (1992c).Google Scholar

Copyright information

© The Pharmaceutical Society of Korea 2003

Authors and Affiliations

  • Yee Su Bog
    • 1
  • Lee Jung Hwa
    • 1
  • Chung Hae Young
    • 1
  • Im Kwang Sik
    • 1
  • Bae Song Ja
    • 2
  • Choi Jae Soo
    • 3
  • Kim Nam Deuk
    • 1
    Email author
  1. 1.Department of PharmacyPusan National UniversityBusan
  2. 2.Department of Food and NutritionSilla UniversityBusan
  3. 3.Faculty of Food Science and BiotechnologyPukyong National UniversityBusanKorea

Personalised recommendations