Archives of Pharmacal Research

, Volume 27, Issue 10, pp 1043–1047 | Cite as

Inhibition of phospholipase Cγ1 and cancer cell proliferation by lignans and flavans fromMachilus thunbergii

  • Ji Suk Lee
  • Jinwoong Kim
  • Young Uck Yu
  • Young Choong Kim
Research Article Article


Thirteen compounds were isolated from the CH2CI2 fraction ofMachilus thunbergii as phospholipase Cγ1 (PLCγ1) inhibitors. These compounds were identified as nine lignans, two neolignans, and two flavans by spectroscopic analysis. Of these, 5,7-di-O-methyl-3′,4′-methylenated (-)-epicatechin (12) and 5,7,3′-tri-O-methyl (-)-epicatechin (13) have not been reported previously in this plant. In addition, seven compounds, machilin A (1), (-)-sesamin (3), machilin G (5), (+)-galbacin (9), licarin A (10), (-)-acuminatin (11) and compound12 showed dose-dependent potent inhibitory activities against PLCγ1in vitro with IC50 values ranging from 8.8 to 26.0 υM. These lignans, neolignans, and flavans are presented as a new class of PLCγ1 inhibitors. The brief study of the structure activity relationship of these compounds suggested that the benzene ring with the methylene dioxy group is responsible for the expression of inhibitory activities against PLCγ1. Moreover, it is suggested that inhibition of PLCγ1 may be an important mechanism for an antiproliferative effect on the human cancer cells. Therefore, these inhibitors may be utilized as cancer chemotherapeutic and chemopreventive agents.

Key words

Machilus thunbergii Lauraceae Phospholipase Cγ1 Lignan Flavan Methylene dioxy group Antiproliferation of human cancer cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achenbach, H., Grob, J., Dominguez, X. A., Cano, G., Star, J. V., Brussolo, L. D. C., Munoz, G., Salgad, F., and Lopez, L., Lignans, neolignans, and norneolignans fromKrameria cystisoides.Phytochemstry, 26, 1159–1166 (1987).CrossRefGoogle Scholar
  2. Ajaneyulu, A. S. R., Rao, A. M., Rao, V. K., Row, L. R., Pelter, A., and Ward, R. S., Novel hydroxy lignans from the heartwood ofGmelina arborea.Tetrahedron, 33, 133–143 (1977).CrossRefGoogle Scholar
  3. Arteaga, C. L., Johnson, M. D., Todderud, G., Coffey, R. J., Carpenter, G., and Page, D. L., Elevated content of the tyrosine kinase substrate phospholipase C-gamma 1 in primary human breast carcinomas.Proc. Natl. Acad. Sci. U.S.A., 88, 10435–10439 (1991).PubMedCrossRefGoogle Scholar
  4. Berridge, M. J., Inositol triphosphate and calcium signaling.Nature, 361, 315–325 (1993).PubMedCrossRefGoogle Scholar
  5. El-Feraly, F. S., Cheatham, S. F., Hufford, C. D., and Li, W. S., Optical resolution of (±)-dehydrodiisoeugenol: structure revision of acuminatin.Phytochemistry, 21, 1133–1135 (1982).CrossRefGoogle Scholar
  6. Hill, S. R., Bonjouklian, R., Powis, G., Abraham, R. T., Ashendel, C. L., and Zalkow, L. H., A multisample assay for inhibitors of phosphatidylinositol phospholipase C: identification of naturally occurring peptide inhibitors with antiproliferative activity.Anti-Cancer Drug Design, 9, 353–361 (1994).PubMedGoogle Scholar
  7. Holloway, D. and Scheinmann, F., Two lignans fromLitsea grandis andL gracilipes.Phytochemistry, 13, 1233–1236 (1974).CrossRefGoogle Scholar
  8. Kim, J. K., Illustrated Natural Drugs Encyclopedia, Namsandang, Seoul, Vol. 2. p. 48 (1984).Google Scholar
  9. King, F. E., and Wilson, J. G., The chemistry of extractives from hardwoods. Part XXXVI. The lignans ofGuaiacum officinale L. J. Chem. Soc., 4011–4024 (1964).Google Scholar
  10. Lee, J. S., Park, S. Y., Kim, J. Y, Oh, W. K., Lee, H. S., Ahn, J. S., and Kim, J., Isolation of phospholipase Cγ1 inhibitors fromAnemarrhena asphodeloides.Seoul Natl. Univ. J. Pharm. Sci., 21, 30–42 (1996a).Google Scholar
  11. Lee, H. S., Oh, W. K., Kim, B. Y, Ahn, S. C., Kang, D. O., Shin, D. I., Kim, J., Mheen, T. I., and Ahn, J. S., Inhibition of phospholipase Cγ1 activity by amentoflavone isolated fromSelaginella tamariscina.Planta Med., 62, 293–296 (1996b).PubMedCrossRefGoogle Scholar
  12. Lee, J. S., Cho, Y. S., Park, E. J., Kim, J., Oh, W. K., Lee, H. S., and Ahn, J. S., Phospholipase Cγ1 inhibitory principles from the sarcotestas ofGinkgo biloba.J. Nat. Prod., 61, 867–872 (1998).PubMedCrossRefGoogle Scholar
  13. Lee, J. S., Cho, Y. S., Kim, J., Lee, H. S., and Ahn, J. S., Phospholipase Cγ1 inhibitory principles from the sarcotestas ofGinkgo biloba (2).Kor. J. Pharmacogn., 30, 280–283 (1999a).Google Scholar
  14. Lee, J. S., Yang, M. Y., Yeo, H., Kim, J., Lee, H. S., and Ahn, J. S., Uncarinic acids, phospholipase Cγ1 inhibitors from hooks ofUncaria rhynchophylla.Bioorg. Med. Chem. Lett., 9, 1429–1432 (1999b).PubMedCrossRefGoogle Scholar
  15. Lee, J. S., Kim, J., Kim, B. Y, Lee, H. S., and Ahn, J. S., Inhibition of phospholipase Cγ1 and cancer cell proliferation by triterpene esters fromUncaria rhynchophylla.J. Nat. Prod., 63, 753–756 (2000).PubMedCrossRefGoogle Scholar
  16. Lee, J. S. and Kim, J., Phospholipase Cγ as a target for the development of new anticancer agents from natural sources.Drugs Future, 26, 163–173 (2001).CrossRefGoogle Scholar
  17. Miyamura, M., Nohara, T., Tomimatsu, T., and Nishioka, I., Seven aromatic compounds from bark ofCinnamomum cassia.Phytochemistry, 22, 215–218 (1983).CrossRefGoogle Scholar
  18. Nishizuka, Y., Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C.Science, 258, 607–614 (1992).PubMedCrossRefGoogle Scholar
  19. Noh, D. Y., Lee, Y. H., Kim, S. S., Kim, Y. I., Ryu, S. H., Suh, P. G., and Park, J. G., Elevated content of phospholipase Cγ1 in colorectal cancer tissues.Cancer, 73, 36–41 (1994).PubMedCrossRefGoogle Scholar
  20. Park, E. J., Park, H. R., Lee, J. S., and Kim, J., Licochalcone A: an inducer of cell differentiation and cytotoxic agent fromPogostemon cablin.Planta Med., 64, 393–490 (1998).CrossRefGoogle Scholar
  21. Powis, G., Inhibitors of phospholipase C.Drugs Future, 18, 343–350 (1993).Google Scholar
  22. Rhee, S. G., Ryu, S. H., Lee, K. Y., and Cho, K. S., Assays of phosphoinositide specific phospholipase C and purification of isozymes from bovine brain. In Dennis, E. A., (Ed.), Methods in Enzymology, Academic Press, New York, Vol. 197, pp. 502–511 (1991).Google Scholar
  23. Rhee, S. G. and Bae, Y. S., Regulation of phosphoinositide-specific phospholipase C isozymes.J. Biol. Chem., 272, 15045–15048 (1997).PubMedCrossRefGoogle Scholar
  24. Shimomura, H., Sashida, Y., and Oohara, M., Lignans fromMachilus thunbergii.Phytochemistry, 26, 1513–1515 (1987).CrossRefGoogle Scholar
  25. Shimomura, H., Sashida, Y., and Oohara, M., Lignans fromMachilus thunbergii.Phytochemistry, 27, 634–636 (1988).CrossRefGoogle Scholar
  26. Skehan, P., Storeng, R., Scudiero, D. A., Monks, A., McMahon, J., Waren, J., Bokesch, H., Kenney, S., and Boyd, M. R., New colorimetric cytotoxicity assay for anticancer-drug screening.J. Natl. Cancer Inst., 82, 1107–1112 (1990).PubMedCrossRefGoogle Scholar
  27. Yu, Y. U., Kang, S. Y., Park, H. Y., Sung, S. H., Lee, E. J., Kim, S. Y., and Kim, Y. C., Antioxidant lignans fromMachilus thunbergii protect CCI4-injured primary cultures of rat hepatocytes.J. Pharm. Pharmacol., 52, 1163–1169 (2000).PubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2004

Authors and Affiliations

  • Ji Suk Lee
    • 1
    • 2
  • Jinwoong Kim
    • 2
  • Young Uck Yu
    • 2
  • Young Choong Kim
    • 2
  1. 1.Research group of Pain and Neuroscience, East-West Medical Research InstituteKyung Hee UniversitySeoulKorea
  2. 2.College of Pharmacy and Research Institute of Pharmaceutical SciencesSeoul National UniversitySeoulKorea

Personalised recommendations