Archives of Pharmacal Research

, Volume 20, Issue 6, pp 533–538 | Cite as

Inhibition of arachidonate release from rat peritoneal macrophage by biflavonoids

  • Song Jin Lee
  • Kun Ho Son
  • Hyeun Wook Chang
  • Sam Sik Kang
  • Hyun Pyo Kim
Research Articles


Biflavonoid is one of unique classes of naturally-occurring bioflavonoid. Previously, certain biflavonoids were found to possess the inhibitory effects on phospholipase A2 activity and lymphocytes proliferation1 suggesting their anti-inflammatory/immunoregulatory potential. In this study, effects of several biflavonoids on arachidonic acid release from rat peritoneal macrophages were investigated, because arachidonic acid released from the activated macrophages is one of the indices of inflammatory conditions. When resident peritoneal macrophages labeled with [3H]arachidonic acid were activated by phorbol 12-myristate 13-acetate (PMA) or calcium ionophore, A23187, radioactivity released in the medium was increased approximately 4.1∼7.3 fold after 120 min incubation compared to the spontaneous release in the control incubation. In this condition, biflavonoids (10 uM) such as ochnaflavone, ginkgetin and isoginkgetin, showed inhibition of arachidonate release from macrophages activated by PMA (32.5∼40.0% inhibition) or A23187 (21.7∼41.7% inhibition). Amentoflavone showed protection only against PMA-induced arachidonate release, while apigenin, a monomer of these biflavonoids, did not show the significant inhibition up to 10 uM. Staurosporin (1 uM), a protein kinase C inhibitor, showed an inhibitory effect only against PMA-induced arachidonate release (96.8% inhibition). Inhibition of arachidonate release from the activated macrophages may contribute to an anti-inflammatory potential of biflavonoidsin vivo.

Key words

Macrophage Arachidonic acid Phospholipase A2 Flavonoid Biflavonoid Ochnaflavone Amentoflavone Ginkgetin Isoginkgetin Anti-inflammation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Aderem, A. A., Protein myristoylation as an intermediate step during signal transduction in macrophages: its role in arachidonic acid metabolism and in responses to interferone.J. Cell Sci. Suppl., 9, 151–167 (1988).Google Scholar
  2. Amella, M., Bronner, C., Briancon, F., Haag, M., Anton, R. and Landry, Y., Inhibition of mast cell histamine release by flavonoids and biflavonoids.Planta Med., 16–20 (1985).Google Scholar
  3. Balboa, M. A., Balsinde, J., Winstead, M. J., Tischfield, J. A. and Dennis, E. A., Novel group V phospholipase A2 involved in arachidonic acid mobilization in murine P388D1 macrophages.J. Biol. Sci., 271, 32381–32384 (1996).Google Scholar
  4. Balsinde, J., Fernandez, B., Solis-Herruzo, J. A. and Diez, E., Pathways for arachidonic acid mobilization in zymosan-stimulated mouse peritoneal macrophages.Biochem. Biophys. Acta, 1136, 75–82 (1992).PubMedCrossRefGoogle Scholar
  5. Balsinde, J., Fernandez, B. and Solis-Herruzo, J. A., Ethanol inhibits zymosan-stimulated eicosanoid production in mouse peritoneal macrophages.Biochim. Biophys. Acta, 1210, 195–201 (1994).PubMedGoogle Scholar
  6. Chang, H. W., Baek, S. H., Chung, K. W., Son, K. H., Kim, H. P. and Kang, S. S., Inactivation of phospholipase A2 by naturally occurring biflavonoid, ochnaflavone.Biochem. Biophys. Res. Commun., 205, 843–849 (1994).PubMedCrossRefGoogle Scholar
  7. Chow, C. W., Grinstein, S. and Rotstein, O. D., Signaling events in monocytes and macrophages.New Horiz, 3, 342–351 (1995).PubMedGoogle Scholar
  8. De Carvalho, M. G., Grritano, J. and Leslie, C. C., Regulation of lysophospholipase activity of the 85 kDa phospholipase A2 and activation in mouse peritoneal macrophages.J. Biol. Chem., 270, 20439–20446 (1995).PubMedCrossRefGoogle Scholar
  9. Felicio, J. D., Goncalez, E., Braggio, M. M., Costantino, L., Albasini, A. and Lins, A. P., Inhibition of lens aldose reductase by biflavones fromOuratea spectabilis.Planta Med., 61, 217–220 (1995).PubMedCrossRefGoogle Scholar
  10. Gewert, K. and Sundler, R., Dexamethasone down-regulates the 85 KDa phospholipase A2 in mouse macrophages and suppress its activation.Biochem. J., 307, 499–504 (1995).PubMedGoogle Scholar
  11. Gil, B., Sanz, M. J., Terencio, M. C., Gunasegaran, R., Paya, M. and Alcaraz, M. J., Morelloflavone, a novel biflavonoid inhibitor of human secretary phospholipase A2 with anti-inflammatory activity.Biochem. Pharmacol., 53, 733–740 (1997).PubMedCrossRefGoogle Scholar
  12. Iwu, M. M., Igboko, O. A., Okunji, C. O. and Tempesta, M. S., Antidiabetic and aldose reductase activities of biflavanones ofGarcinia kola.J. Pharm. Pharmacol., 42, 290–292 (1990).PubMedGoogle Scholar
  13. Kang, S. S., Kim, J. S., Kawk, W. J. and Kim, K. H., Flavonoids fromGinkgo biloba leaves.Kor. J. Pharmacogn., 21, 111–120 (1990).Google Scholar
  14. Kim, H. P., Mani, I., Iversen, L. and Ziboh, V. A., Effects of naturally-occurring flavonoids and biflavonoids on epidermal cyclooxygenase and lipoxygenase from Guinea-pigs.Prostaglandins Leukotrienes and Essential Fatty acids, in press (1997).Google Scholar
  15. Lee, S. J., Choi, J. H., Son, K. H., Chang, H. W., Kang, S. S. and Kim, H. P., Suppression of mouse lymphocyte proliferation in vitro by naturally occurring biflavonoids.Life Sci., 57, 551–558 (1995).PubMedCrossRefGoogle Scholar
  16. Lin, Y. M., Chen, F. C. and Lee, K. H., Hinokiflavone, a cytotoxic principle fromRhus succedanea and the cytotoxicity of the related biflavonoids.Planta Med., 55, 166–168 (1989).PubMedCrossRefGoogle Scholar
  17. Lloret, S., Martinez, J. and Moreno, J. J., Influence of calcium on arachidonic acid mobilization by murine resident macrophages.Acta Biochem. Biophys., 323, 251–257 (1995).CrossRefGoogle Scholar
  18. Lloret, S. and Moreno, J. J., Immunochemical relatedness between secretary phospholipase A2 and intracellular phospholipase A2 activity linked with arachidonic acid mobilization in macrophages.Toxicon, 32, 1327–1336 (1994).PubMedCrossRefGoogle Scholar
  19. Locati, M., Zhou, D., Luini, W., Evangelista, V., Mantovani, A. and Sozzani, S., Rapid induction of arachidonic acid release by monocyte chemotactic protein-1 and related chemokines: Role of Ca++ influx, synergism with platelet-activating factor and significance for chemotaxis.J. Biol. Chem., 269, 4746–4753 (1994).PubMedGoogle Scholar
  20. M’Rini-Puel, C., Thardin, J-F., Forgue, M-F., Cambon, C., Seguelas, M-H. and Pipy, B., Arachidonic acid metabolism of rat peritoneal macrophages after passive sensitization and allergen challenge.Biochim. Biophys. Acta, 167, 165–174 (1993).Google Scholar
  21. Qiu, Z. H. and Leslie, C. C., Protein kinase C-dependent and-independent pathways of mitogen-activated protein kinase activation in macrophages by stimuli that activate phospholipase A2.J. Biol. Chem., 269, 19480–19487 (1994).PubMedGoogle Scholar
  22. Ruckstuhl, M., Beretz, A., Anton, R. and Landry, Y., Flavonoids are selective cyclic phosphodiesterase inhibitors.Biochem. Pharm., 28, 535–538 (1979).PubMedCrossRefGoogle Scholar
  23. Shin, D. I. and Kim, J., Flavonoid constituents ofSelaginella tamariscina.Kor. J. Pharmacogn., 22, 207–210 (1991).Google Scholar
  24. Son, K. H., Park, J. O., Chung, K. C., Chang, H. W., Kim, H. P., Kim, J. S. and Kang, S. S., Flavonoids from the aerial parts ofLonicera japonica.Arch. Pharm. Res., 15, 365–370 (1992).CrossRefGoogle Scholar
  25. Sun, C-M., Syu, W-J., Huang, Y-T., Chen, C-C. and Ou, J-C., Selective cytotoxicity of ginkgetin fromSelaginella moellendorffii.J. Nat. Prod., 60, 382–384 (1997).PubMedCrossRefGoogle Scholar
  26. Taylor, S. M., Laegreid, W. W., Euglena, M. D., Dani, G. M., Silflow, R. M., Liggitt, M. D. and Leid, R. W., Influence of extracellular calcium on the metabolism of arachidonic acid in alveolar macrophages.J. Leukoc. Biol., 48, 502–511 (1990).PubMedGoogle Scholar
  27. Triggiani, M., Oriente, A. and Marone, G., Differential roles for triglyceride and phospholipid pools of arachidonic acid in human lung macrophages.J. Immunol., 152, 1394–1403 (1994).PubMedGoogle Scholar
  28. Vial, D., Seorale-Pose, M., Harvet, N., Molio, L., Vargaftig, B. B. and Tonqui, L., Expression of the type-II phospholipase A2 in alveolar macrophages. Down-regulation by an inflammatory signal.J. Biol. Chem., 270, 17327–17332 (1995).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 1997

Authors and Affiliations

  • Song Jin Lee
    • 1
  • Kun Ho Son
    • 2
  • Hyeun Wook Chang
    • 3
  • Sam Sik Kang
    • 4
  • Hyun Pyo Kim
    • 1
  1. 1.College of PharmacyKangwon National UniversityChunchonKorea
  2. 2.Department Food NutritionAndong National UniversityAndongKorea
  3. 3.College of PharmacyYeungnam UniversityGyongsanKorea
  4. 4.Natural Products Research InstituteSeoul National UniversitySeoulKorea

Personalised recommendations