Advertisement

Representation of a function by the Fourier-Stieltjes integral

  • Tatsuo Kawata
Article
  • 96 Downloads

Keywords

Fourier Fourier Transform Probability Distribution Real Number Bors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (2).
    For example see H. Cramér, Random variables and probability distributions, Cambr. Tracts, 1937. Theorem 11, p. 29.zbMATHGoogle Scholar
  2. (1).
    See, for example, S. Bochner, Fouriersche Integrale, 1937, Leipzig. Satz. 20, p. 70, Satz. 21, p. 71.Google Scholar
  3. (2).
    S. Bochner, loc. cit, Fouriersche Integrale, 1937, Leipzig. Satz 20, p. 70, Satz 21, p. 71.Google Scholar
  4. (1).
    A. Khintchine, Zur Kennzeichnung der characteristischen Funktion. Bull. de l’univ. d’etat-a Moscou, vol. 1 (1937).Google Scholar
  5. (1).
    H. Cramér, On the representation of a function by certain Fourier integrals, Trans. Amer. Math. Soc. 46 (1939), A. G. Domingnez, The representation of functions by the Fourier integrals, Duke Math. Journ., 6 (1940).MathSciNetCrossRefGoogle Scholar
  6. (1).
    H. Cramér, loc. cit. On the representation of a function by certain Fourier integrals, Trans. Amer. Math. Soc. 46 (1939), A.G. Domingnez, loc. cit The representation of functions by the Fourier integrals, Duke Math. Journ., 6 (1940).MathSciNetCrossRefGoogle Scholar
  7. (2).
    S. Bochner, A theorem on Fourier integral, Bull. Amer. Math. Soc. 1934, p. 271–276.MathSciNetCrossRefGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 1948

Authors and Affiliations

  • Tatsuo Kawata
    • 1
  1. 1.Institute of Statistical MathematicsTokyo Institute of TechnologyTokyo

Personalised recommendations