An antioxidative and antiinflammatory agent for potential treatment of osteoarthritis fromEcklonia cava

  • Hyeon-Cheol Shin
  • Hye Jeong Hwang
  • Kee Jung Kang
  • Bong Ho LeeEmail author
Articles Drug Design


Osteoarthritis is thought to be induced by the ageing-related loss of homeostatic balance between degeneration and repair mechanism around cartilage tissue in which inflammatory mediators such as reactive oxygen species, cytokines and prostaglandins are prone to overproduction under undesirable physiological conditions. Phlorotannins are unique polyphenolic compounds bearing dibenzo-1,4-dioxin skeleton which are not found in terrestrial plants but found only in some brown algal species such asEcklonia andEisenia families. Phlorotanninrich extracts ofEcklonia cava including LAD103 showed significant antioxidant activities such as DPPH radical scavenging, ferric ion reduction, peroxynitrite scavenging, and inhibition of LDL oxidation, indicating their possible antioxidative interference both in onset and downstream consequences of osteoarthritis. LAD103 also showed significant down regulation of PGE2 generation in LPS-treated RAW 246.7 cells, and significant inhibition of human recombinant interleukin-1α-induced proteoglycan degradation, indicating its beneficial involvement in pathophysiological consequences of osteoarthritis, the mechanism of which needs further investigation. Since LAD103 showed strong therapeutic potentials in arthritic treatment through severalin vitro experiments, it is highly encouraged to perform further mechanistic and efficacy studies.

Key words

Ecklonia cava Phlorotannin Antioxidant Antiinflammatory Osteoarthritis 


  1. Ahmed, S., Rahman, A., Hasnain, A., Lalonde, M., Goldberg, V. M., and Haqqi, T. M., Green tea polyphenol epigallocatechin-3-gallate inhibits the IL-1β-induced activity and expression of cyclooxygenase-2 and nitric oxide synthase-2 in human chondrocytes.Free Radical Biol. Med., 33, 1097–1105 (2002).CrossRefGoogle Scholar
  2. Benzie, I. F. F., and Strain, J. J., Ferric reducing antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration.Methods Enzymol., 299, 15–27 (1999).PubMedCrossRefGoogle Scholar
  3. Blois, M. S., Antioxidant determinations by the use of a stable free radical.Nature, 26, 1199–1200 (1958).CrossRefGoogle Scholar
  4. Buege, J. A., and Aust, S. D., Microsomal Lipid Peroxidation.Methods Enzymol., 52, 302–310 (1987).CrossRefGoogle Scholar
  5. Choi, J. H., Kim, D. Y., Yoon, J. H., Youn, H. Y., Yi, J. B., Rhee, H. I., Ryu, K. H., Jung, K., Han, C. K., Kwak, W. J., and Cho, Y. B., Effects of SKI 306X, a new herbal agent, on proteoglycan degradation in cartilage explant culture and collagenase-induced rabbit osteoarthritis model.Osteoarthritis and Cartilage, 10, 471–478 (2002).PubMedCrossRefGoogle Scholar
  6. Corvol, M. T., The chondrocytes: from cell aging to osteoarthritis.Joint Bone Spine, 67, 557–560 (2000).PubMedCrossRefGoogle Scholar
  7. Dalle-Donnea, I., Rossib, R., Giustarinib, D., Milzania, A., and Colombo, R., Protein carbonyl groups as biomarkers of oxidative stress.Clin. Chim. Acta 329, 23–38 (2003).CrossRefGoogle Scholar
  8. Evans, C. H., and Stefanovic-Racic, M., Nitric oxide in arthritis.METHODS: A Companion to Methods in Enzymology, 10, 38–42 (1996).PubMedCrossRefGoogle Scholar
  9. Fukuyama, Y., Kodama, M., Miura, I., Kinzyo, Z., Kido, M., Mori, H., Nakayama, Y., and Takahashi, M., Structure of an antiplasmin Inhibitor, Eckol, Isolated from the brown alga Ecklonia kurome OKAMURA and inhibitory activities of its derivatives on plasmin inhibitors.Chem. Pharm. Bull., 37, 349–353 (1989).PubMedGoogle Scholar
  10. Fukuyama, Y., Kodama, M., Miura, I., Kinzyo, Z., Mori, H., Nakayama, Y., and Takahashi, M., Anti-plasmin Inhibitor. VI. Structure of phlorofucofuroeckol A, a novel phlorotannin with both dibenzo-1,4-dioxin and dibenzofuran elements, from Ecklonia kurome OKAMURA.Chem. Pharm. Bull., 38, 133–135 (1990).PubMedGoogle Scholar
  11. Glombitza, K. W., and Gerstberger, G., Phlorotannins with dibenzodioxin structural elements from the brown alga Eisenia arborea.Phytochemistry, 24, 543–551 (1985).CrossRefGoogle Scholar
  12. Haenen, G. R. M. M., Paquay, J. B. G., Korthouwer, R. E. M., and Bast, A., Peroxynitrite scavenging by flavonoids.Biochem. Biophys. Res. Commun., 236, 591–593 (1997).PubMedCrossRefGoogle Scholar
  13. Henrotin, Y. E., Bruckner, P., and Pujol, J. P. L., The role of reactive oxygen species in homeostasis and degradation of cartilage.Osteoarthritis Cartilage, 11, 747–755 (2003).PubMedCrossRefGoogle Scholar
  14. Kang, K., Park, Y., Hwang, H. J., Kim, S. H., Lee, J. G., and Shin, H. C., Antioxidtive properties of brown algae polyphenolics and their perspectives as chemopreventive agents against vascular risk factors.Arch. Pharm. Res., 26, 286–293 (2003).PubMedCrossRefGoogle Scholar
  15. Kaur, H., and Halliwell, B., Evidence for nitric oxide-mediated oxidative damage in chronic inflammation-Nitrotyrosine in serum and synovial fluid from rheumatoid patients.FEBS Lett., 350, 9–12 (1994).PubMedCrossRefGoogle Scholar
  16. Kooy, N. W., Royall, J. A., Ischiropoulos, H., and Beckman, J. S., Peroxynitrite-mediated oxidation of dihydrorhodamine 123.Free Radical Biol. Med., 16, 149–156 (1994).CrossRefGoogle Scholar
  17. Li, M., Rosenfeld L., Vilar R. E., and Cowman, M. K., Degradation of hyaluronan by peroxynitrite.Arch. Biochem. Biophys., 341, 245–250 (1997).PubMedCrossRefGoogle Scholar
  18. Marinia, S., Fasciglionea, G. F., Monteleoneb, G., Maiottib, M., Tarantinob, U., and Colettaa M., A correlation between knee cartilage degradation observed by arthroscopy and synovial proteinases activities.Clin. Biochem., 36, 295–304 (2003).CrossRefGoogle Scholar
  19. Martel-Pelletier, J., Alaaeddine, N., and Pelletier, J. P., Cytokines and their role in the pathophysiology of osteoarthritis.Front. Biosci., 4, 694–703 (1999).CrossRefGoogle Scholar
  20. Mathy-Hartert, M., Deby-Dupont, G. P., Reginster, J. Y. L., Ayache, N., Pujol, J. P., and Henrotin, Y. E., Regulation by reactive oxygen species of interleukin-1, nitric oxide and prostaglandin E2 production by human chondrocytes.Osteoarthritis Cartilage, 10, 547–555 (2002).PubMedCrossRefGoogle Scholar
  21. Morisset, S., Patry, C., Lora, M., and de Brum-Fernandes, A. J., Regulation of cyclooxygenase-2 expression in bovine chondrocytes in culture by interleukin 1α, tumor necrosis factor-α, glucocorticoids, and 17β-estradiol.J. Rheumatol., 25, 1146–1153 (1998).PubMedGoogle Scholar
  22. Nakagawa, T., Akagi, M., Hoshikawa, H., Chen, M., Yasuda, T., and Mukai, S., Lectin-like oxidized low-density lipoprotein receptor 1 mediates leukocyte infiltration and articular cartilage destruction in rat zymosan induced arthritis.Arthritis Rheum., 46, 2486–2494 (2002).PubMedCrossRefGoogle Scholar
  23. Nakamura, T., Nagayama, K., Uchida, K., and Tanaka, R., Antioxidant activity of phlorotannins isolated from the brown alga Eisenia bicyclis.Fisheries Sci., 62, 923–926 (1996).Google Scholar
  24. Nakayama, Y., Takahashi, M., Fukuyama, Y., and Kinzyo, Z., An antiplasmin Inhibitor, eckol, isolated from the brown alga Ecklonia kurome.Agric. Biol. Chem., 53, 3025–3030 (1989).Google Scholar
  25. Sandy, J. D., Brown, H. L. G., and Lowther, D. A., Degradation of proteoglycan in articular cartilage.Biochim. Biophys. Acta, 543, 36–44 (1978).Google Scholar
  26. Schuerwegh, A. J., Dombrecht, E. J., Stevens, W. J., Van Offel, J. F., Bridts, C. H., and De Clerck, L. S., Influence of proinflammatory (IL-1, Il-6, TNF-α, IFN-γ) and anti-inflammatory (IL-4) cytokines on chondrocyte function.Osteoarthritis and Cartilage, 11, 681–687 (2003).PubMedCrossRefGoogle Scholar
  27. Shibata, T., Nagayama, K., Tanaka, R., Yamaguchi, K., and Nakamura, T., Inhibitory effects of brown algal phlorotannins on secretory phospholipase A2S, lipoxygenases and cycloxygenases.J. Appl. Phycol., 15, 61–66 (2003).CrossRefGoogle Scholar
  28. Taskiran, D., Stefanovic-Racic, M., Georgescu, H., and Evans, C., Nitric oxide mediates suppression of cartilage proteoglycan synthesis by Interleukin-1.Biochem. Biophysics. Res. Commun., 200, 142–148 (2000).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2006

Authors and Affiliations

  • Hyeon-Cheol Shin
    • 2
  • Hye Jeong Hwang
    • 1
  • Kee Jung Kang
    • 2
  • Bong Ho Lee
    • 2
    Email author
  1. 1.Chemoprevention and Support Program, Division of Hematology and Oncology, Department of Internal Medicine, College of Medicine and Public HealthThe Ohio State UniversityColumbusU.S.A.
  2. 2.Laboratory of Aging and Degenerative Diseases and Department of Applied ChemistryHanbat National UniversityDaejonKorea

Personalised recommendations