Advertisement

Archives of Pharmacal Research

, Volume 17, Issue 2, pp 115–118 | Cite as

Isolation of isoguanosine fromCroton tiglium and its antitumor activity

  • Jung Han Kim
  • Sang Jun Lee
  • Young Bok Han
  • Jung Jo Moon
  • Jong Bae Kim
Research Articles

Abstract

This paper describes the isolation of isoguanosine fromCroton tiglium L. and its cytotoxic effect against several tumor cell lines in culture and newly reports that isoguanosine has an antitumor activity against implanted S-180 ascitic tumor mice. Isoguanosine is effective at the dose of 24 mg/kg/day×5, with T/C value of 168%. Isoguanosine inhibits the growth of S-180 and Ehrlich solid tumor in mice at the optimal doses of 96 mg/kg/day×12 and 48 mg/kg/day×12, with 1-T/C values of 65% and 60% respectively.

Key words

Isoguanosine Anti-tumor activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Buell, M. V. and Perkins, M. E., Cryst. guanine nucleoside.J. Biol. Chem., 72, 745–748 (1927).Google Scholar
  2. Cherbuliez, E. and Bernhard, K., Croton seed(1)crotonoside.Helv. Chim. Acta., 15, 464, 978–982 (1932).CrossRefGoogle Scholar
  3. Divaker, K. J., Colin, B. R., Yogesh, S. S. and Karl, A. D., Conversion of guanosine into isoguanosine and derivatives.J. Chem. Soc. Perkin Trans I, 771–774 (1991).CrossRefGoogle Scholar
  4. Fuhrman, A. F., Geraldin, J. F., Ronald, J. N. and Harry, S. M., Isoguanosine; isolation from an animal.Science, 212, 557–558 (1981).PubMedCrossRefGoogle Scholar
  5. Hagen, C., Analysis in the variation in lymphocyte response to PHA (phytohemagglutinin) in normal subjects.Biochem. Biophys. Acta., 293, 105–110 (1973).PubMedGoogle Scholar
  6. Huang, M., Shimizu, H. and Daly, J. W., Accumulation of cyclic adenosine monophosphate in incubated slices of brain tissue.J. Med. Chem., 15, 462–468 (1972).PubMedCrossRefGoogle Scholar
  7. Karon, M. and Shirakawa, S., Rocus of action of 1-β-D-arabinofuranosyl cytosine in the cell cycles.Cancer Res., 29, 687–696 (1969).PubMedGoogle Scholar
  8. Kim, C. W., Moon, J. C. and Kim, J. B., Cytotoxic effects of extract (CP-2) from the mixture of Coptis andCroton tiglium L. of the various tumor cell-lines.The Korean Central Journal of Medicine, 58(3), 177–184 (1993).Google Scholar
  9. Kim, J, H., Lee, S. J., Han, Y. B. and Kim, J. B., Identification of active compounds fromCroton tiglium andCoptis japonica aqeous mixture (CP2) and studies of it's cytotoxicity.Kor. J. Pharmaeogn., 38(1), 31–37 (1994).Google Scholar
  10. Kyoichi, S., Toshitaka, M. and Sueo, M. U., Antitumor activity and hematotoxicity of a new, substituted dihydrobenzo., FK 973, in mice. Cancer Res., 48, 1168–1172 (1988).Google Scholar
  11. Lowry, B. A. and Brown, G. B., The utilization of purine nucleosides for nucleic acid synthesis in the rat.J. Biol. Chem.,197, 591 (1952).Google Scholar
  12. Mosmann, T. Rapid calorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity.J. Immumol. Methods, 65, 55–63 (1983).CrossRefGoogle Scholar
  13. Pike, L. M. and Rottman, F., The determination of 2′-O-methyl nucleosides in RNA.Anal. Biochem., 61, 367–378 (1974).PubMedCrossRefGoogle Scholar
  14. Skipper, H. E., Montgomery, J. A., Thomson, J. R. and Schabel, F. M., Structure-activity relations and crossresistance observed on evaluation of a series of purine analogs against exptl. neoplasms.Cancer Res., 19, 425 (1959).PubMedGoogle Scholar
  15. Vasu, N. and David, A. Y., A New Synthesis of Isoguanosine.J. Org. Chem., 50, 406–408 (1985).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 1994

Authors and Affiliations

  • Jung Han Kim
    • 1
  • Sang Jun Lee
    • 1
  • Young Bok Han
    • 2
  • Jung Jo Moon
    • 2
  • Jong Bae Kim
    • 3
  1. 1.Department of Food and BiotechnologyYonsei UniversitySeoulKorea
  2. 2.Institute of Experimental TumorsKon Kuk UniversitySeoulKorea
  3. 3.Animal Resource Research CenterKon Kuk UniversitySeoulKorea

Personalised recommendations