Advertisement

Journal of Chemical Sciences

, Volume 96, Issue 3–4, pp 121–126 | Cite as

A generalization of Brillouin's theorem and the stability conditions in the quantum-mechanical variation principle in the case of general trial wave functions

  • Per-Olov Löwdin
Article

Abstract

In connection with the quantum-mechanical variation principle, it is shown that the Brillouin theorem and the stability conditions usually associated with the Hartree-Fock scheme in the many-electron theory may be generalized to the case of arbitrary trial functions depending on a set of linear or non-linear complex parameters.

Keywords

Variation Principle Negative Eigenvalue Trial Function Finite Variation Trial Wave Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams W 1962Phys. Rev. 127 1650CrossRefGoogle Scholar
  2. Bénard M and Paldus J 1980J. Chem. Phys. 72 6546CrossRefGoogle Scholar
  3. Brillouin L 1933Actual. Sci. Ind. 71 Google Scholar
  4. Brillouin L 1934Actual. Sci. Ind. 159 Google Scholar
  5. Cizek J and Paldus J 1967J. Chem. Phys. 47 3976CrossRefGoogle Scholar
  6. Cizek J and Paldus J 1970J. Chem. Phys. 53 821CrossRefGoogle Scholar
  7. Fukutome H 1968Prog. Theor. Phys. 40 998, 1227CrossRefGoogle Scholar
  8. Fukutome H 1971Prog. Theor. Phys. 45 1382CrossRefGoogle Scholar
  9. Fukutome H 1973Prog. Theor. Phys. 49 22CrossRefGoogle Scholar
  10. Fukutome H 1973Prog. Theor. Phys. 50 1433CrossRefGoogle Scholar
  11. Fukutome H 1974Prog. Theor. Phys. 52 115, 1766CrossRefGoogle Scholar
  12. Fukutome H 1975Prog. Theor. Phys. 53 1320CrossRefGoogle Scholar
  13. Fukutome H 1981Int. J. Quantum Chem. 20 955CrossRefGoogle Scholar
  14. Laforgue A, Cizek J and Paldus J 1973J. Chem. Phys. 59 2560CrossRefGoogle Scholar
  15. Laidlaw W G 1973Int. J. Quantum Chem. 7 87CrossRefGoogle Scholar
  16. Löwdin P O, Calais J L and Calazans J M 1981Int. J. Quantum Chem. 20 1201CrossRefGoogle Scholar
  17. Ozaki M 1979Prog. Theor. Phys. 62 1183CrossRefGoogle Scholar
  18. Ozaki M 1980Prog. Theor. Phys. 63 84CrossRefGoogle Scholar
  19. Ozaki M and Fukutome H 1978Prog. Theor. Phys. 60 1322CrossRefGoogle Scholar
  20. Paldus J and Cizek J 1969Prog. Theor. Phys. 42 769CrossRefGoogle Scholar
  21. Paldus J and Cizek J 1970aJ. Chem. Phys. 52 2919CrossRefGoogle Scholar
  22. Paldus J and Cizek J 1970bJ. Polymer Sci. C29 199Google Scholar
  23. Paldus J and Cizek J 1970cPhys. Rev. A2 2268CrossRefGoogle Scholar
  24. Paldus J and Cizek J 1971J. Chem. Phys. 54 2293CrossRefGoogle Scholar
  25. Paldus J, Cizek J and Keating B A 1973Phys. Rev. A8 640CrossRefGoogle Scholar
  26. Paldus J, Cizek J and Laforgue A 1978Int. J. Quantum Chem. 13 41CrossRefGoogle Scholar
  27. Paldus J and Veillard A 1977Chem. Phys. Lett. 50 6CrossRefGoogle Scholar
  28. Paldus J and Veillard A 1978Mol. Phys. 35 445CrossRefGoogle Scholar
  29. Thouless D J 1961The quantum mechanics of many-body systems (New York: Academic Press)Google Scholar

Copyright information

© Indian Academy of Sciences 1986

Authors and Affiliations

  • Per-Olov Löwdin
    • 1
    • 2
  1. 1.Quantum Theory Project, Departments of Chemistry and PhysicsUniversity of FloridaGainesvilleUSA
  2. 2.Uppsala UniversityUppsalaSweden

Personalised recommendations