Archives of Pharmacal Research

, 29:786 | Cite as

Glucose-lowering effect of powder formulation of African black tea extract in KK-Ay/TaJcl diabetic mouse

Articles Drug Efficacy

Abstract

We observed the suppressive effect of a powder formulation of African black tea extract prepared from the leaves ofCamellia sinensis on type 2 non-insulin dependent diabetic mice, KK-Ay/TaJcl. Black tea extract significantly showed suppressive effect of the elevation of blood glucose on oral glucose tolerance test of 8 week-old KK-Ay/TaJcl mice (P<0.05). Long-term treatment with black tea extract showed significant suppression of post-prandial blood glucose and obesity (P<0.05). The weight of the intestine of mice treated with black tea extract was significantly reduced (P<0.05). From these results, African black tea used in this study showed a suppressive effect on the elevation of blood glucose during food intake and the body weight.

Key words

Black tea extract Glucose-lowering Theaflavin Tea polyphenol Adipocyte 

References

  1. Anderson, R. A. and Polansky, M. M., Tea enhances insulin activity.J. Agric. Food Chem., 50, 7182–7186 (2002).PubMedCrossRefGoogle Scholar
  2. Arakawa, H., Maeda, M., Okuno, S., and Shimamura, T., Role of hydrogen peroxide in bactericidal action of catechin.Biol. Pharm. Bull., 27(3), 277–281 (2004).PubMedCrossRefGoogle Scholar
  3. Bloomgarden, Z. T., Troglitazone: current therapeutic role in type 2 diabetes mellitus.Endocr. Pract., 4, 213–218 (1998).PubMedGoogle Scholar
  4. Broadhurst, C. L., Polansky, M. M., and Anderson, R. A., Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro.J. Agric. Food Chem., 48, 849–852 (2000).PubMedCrossRefGoogle Scholar
  5. Chakravarthy, B. K., Gupta, S., and Gode, K. D., Antidiabetic effect of (−)-epicatechin.Lancet 2, 272–273 (1982).PubMedCrossRefGoogle Scholar
  6. Crespy, V. and Williamson, G., A review of the health effects of green catechins inin vivo animal models.J. Nutr., 134, 3431S-3440S (2004).PubMedGoogle Scholar
  7. Gomes, A., Vedasiromoni, J. R., Das, M., Sharma, R. M., and Ganguly, D. K., Anti-hyperglycemic effect of black tea (Camellia sinensis) in rat.J. Ethnopharmacol., 45, 223–226 (1995).PubMedCrossRefGoogle Scholar
  8. Halle, M., Berg, A., Northoff, H., and Keul, J., Importance of TNF-alpha and leptin in obesity and insulin resistance: a hypothesis on the impact of physical exercise.Exerc. Immunol. Rev., 4, 77–94 (1998).PubMedGoogle Scholar
  9. Hermann L. S., Optimising therapy for insulin-treated type 2 diabetes mellitus.Drugs Aging, 17, 283–294 (2000).PubMedCrossRefGoogle Scholar
  10. Hii, C. S. and Howell, S. L., Effects of epicatechin on rat islets of Langerhans.Diabetes, 33, 291–296, (1984).PubMedCrossRefGoogle Scholar
  11. Honda, M. and Hara, Y., Inhibition of rat small intestinal sucrase and α-glucosidase activities by tea polyphenols.Biosci. Biotech. Biochem., 57, 123–124 (1993).Google Scholar
  12. Hosoda, K., Wang, M. F., Liao, M. L., Chuang, C. K., Iha, M., Clevidence, B., and Yamamoto, S., Antihyperglycemic effect of oolong tea in type 2 diabetes.Diabetes Care, 26, 1714–1718 (2003).PubMedCrossRefGoogle Scholar
  13. Kadowaki, T., Insights into insulin resistance and type 2 diabetes from knockout mouse models.J. Clin. Invest., 106, 459–465 (2000).PubMedCrossRefGoogle Scholar
  14. Kao, Y-H, Hiipakka R. A., and Liao, S., Modulation of endocrine systems and food intake by green tea epigallocatechin gallate.Endocrinology, 141, 980–987 (2000).PubMedCrossRefGoogle Scholar
  15. Kolb, H., Kiesel, U. Greulich, B., and van der Bosch, J., Lack of antidiabetic effect of (−)-epicatechin.Food Chem. Toxicol., 42, 975–981 (2004).CrossRefGoogle Scholar
  16. Kuroda, Y. and Hara, Y., Antimutagenic and anticarcinogenic activity of tea polyphenols.Mutat. Res., 436, 69–97 (1999).PubMedCrossRefGoogle Scholar
  17. Lazar, M. A., PPARgamma, 10 years later.Biochimie., 87, 9–13 (2005).PubMedCrossRefGoogle Scholar
  18. Lehmann, J. M., Moore, L. B., Smith-Oliver, T. A., Willkison, W. O., Willson, T. M., and Kliewer, S. A., An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferators-activated receptor gamma (PPAR gamma).J. Biol. Chem., 270, 12953–12956 (1995).PubMedCrossRefGoogle Scholar
  19. Leung, L. K., Su, Y., Chen, R., Zhang, Z., Huang, Y., and Chen, Z. Y., Theaflavins in black tea and catechins in green tea are equally effective antioxidants.J. Nutri., 131, 2248–2251. (2001).Google Scholar
  20. Lohray, B. B. and Bhushan, V., Advances in insulin sensitizers.Curr. Med. Chem., 11, 2467–2503 (2004).PubMedGoogle Scholar
  21. Matsui, T., Yoshimoto, C., Osajima, K., Oki, T., and Osajima, Y.,In vitro survey of alpha-glucosidase inhibitory food components.Biosci. Biotechnol. Biochem., 60, 2019–2022 (1996).PubMedCrossRefGoogle Scholar
  22. Nakayama, M., Suzuki, K., Toda, M., Okubo, S., Hara, Y., and Shimamura, T., Inhibition of the infectivity of influenza virus by tea polyphenols.Antiviral. Res. 21(4), 289–299 (1993).PubMedCrossRefGoogle Scholar
  23. Okuno, A., Tamemoto, H., Tobe, K., Ueki, K., Mori, Y., Iwamoto, K., Umesono, K., Akanuma, Y., Fujiwara, T., Horikoshi, H., and Yazaki, Y., Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats.J. Clin. Invest., 101, 1354–1361 (1998).PubMedCrossRefGoogle Scholar
  24. Peraldi, P., Xu, M., and Spiegelman, B. M., Thiazolidinediones block tumor necrosis factor-alpha-induced inhibition of insulin signaling.J. Clin. Invest., 100, 1863–1869 (1997).PubMedCrossRefGoogle Scholar
  25. Rosak, C., The pathophysiologic basis of efficacy and clinical experience with the new oral antidiabetic agents.J. Diabetes Complicati., 16, 123–132 (2002).CrossRefGoogle Scholar
  26. Ruan, H. and Lodish, H. F., Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-alpha.Cytokine Growth Factor Rev., 14, 447–455 (2003).PubMedCrossRefGoogle Scholar
  27. Ruan, H., Pownall, H. J., and Lodish, H. F., Troglitazone antagonizes tumor necrosis factor-alpha-induced reprogramming of adipocyte gene expression by inhibiting the transcriptional regulatory functions of NF-kappaB.J. Blol. Chem., 278, 28181–28192 (2003).CrossRefGoogle Scholar
  28. Ryan, E. A., Imes, S., Wallace, C., and Jones, S., Herbal tea in the treatment of diabetes mellitus.Clin. Invest. Med., 23, 311–317 (2000).PubMedGoogle Scholar
  29. Shimizu, M., Kobayashi, Y., Suzuki, M., Satsu, H., and Miyamoto, Y., Regulation of intestinal glucose transport by tea catechins.Biofactor, 13, 61–65 (2000).Google Scholar
  30. Shirai, N. and Suzuki, H., Effects of western, vegetarian, and Japanese dietary fat model diets with or without green tea extract on the plasma lipids and glucose, and liver lipids in mice. A long-term feeding experiment.Annal. Nutri. Metab., 48, 95–102 (2004).CrossRefGoogle Scholar
  31. Suto, J., Matsuura, S., Imamura, K., Yamanaka, H., and Sekikawa, K., Genetic analysis of non-insulin-dependent diabetes mellitus and KK-Ay mice.Eur. J. Endocrinol., 139, 654–661 (1998).PubMedCrossRefGoogle Scholar
  32. Takamura, T., Nohara, E., Nagai, Y., and Kobayashi, K., Stagespecific effect of a thiazolidinediones on proliferation, differentiation and PPARgamma mRNA expression in 3T3-L1 adipocytes.Eur. J. Pharmacol., 422, 23–29 (2001).PubMedCrossRefGoogle Scholar
  33. Taylor, S. I., Deconstructing type 2 diabetes.Cell 97, 9–12 (1999).PubMedCrossRefGoogle Scholar
  34. Tolman, K. G., Fonseca, V., Tan, M. H., and Dalpiaz, A., Narrative review: hepatobiliary disease in type 2 diabetes mellitus.Ann. Intern. Med., 141, 946–956 (2004).PubMedGoogle Scholar
  35. Tsuneki, H., Ishizuka, M., Terasawa, M., Wu, J. B., Sasaoka, T., and Kimura, I., Effect of green tea on blood glucose levels and serum proteomic patterns in diabetic (db/db) mice and on glucose metabolism in healthy humans.BMC Pharmacol., 4, 18 (2004).PubMedCrossRefGoogle Scholar
  36. Tzameli, I., Fang, H., Ollero, M., Shi, H., Hamm, J. K., Kievit, P., Hollenberg, A. N., and Flier, J. S., Regulated production of a peroxisome proliferators-activated receptor-gamma ligand during an early phase of adipocyte differentiation in 3T3-L1 adipocytes.J. Biol. Chem., 279, 36093–36102 (2004).PubMedCrossRefGoogle Scholar
  37. Waltner-Law, M. E., Wang, X. L., Law, B. K., Hall, R. K., and Nawano, M., Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production.J. Biol. Chem., 277, 34933–34940 (2002).PubMedCrossRefGoogle Scholar
  38. Winkler, G., Kiss, S., Keszthelyi, L., Sapi, Z., Ory, I., Salamon, F., Kovacs, M., Vargha, P., Szekeres, O., Speer, G., Karadi, I., Sikter, M., Kaszas, E., Dworak, O., Gero, G., and Cseh, K., Expression of tumor necrosis factor (TNF)-alpha protein in the subcutaneous and visceral adipose tissue in correlation with adipocyte cell volume, serum TNF-alpha, solube serum TNF-receptor-2 concentrations and C-peptide level.Eur. J. Endocrinol., 149, 129–135 (2003).PubMedCrossRefGoogle Scholar
  39. Wu, L. Y., Juan, C. C., Ho, L. T., Hsu, Y. P., and Hwang, L. S., Effect of green tea supplementation on insulin sensitivity in Sprague-Dawley rats.J. Agric. Food Chem., 52, 643–648 (2004).PubMedCrossRefGoogle Scholar
  40. Yale, J. F., Valiquett, T. R., Ghazzi, M. N., Owens-Grillo, J. K., Whitcomb, R. W., and Foyt, H. L., The effect of thiazolidinedione drug, troglitazone, on glycemia in patient with type 2 diabetes mellitus poorly controlled with sulfonylurea and metformin. A multicenter, randomized, doubleblind, placebocontrolled trial.Ann. Intern. Med., 134, 737–745 (2001).PubMedGoogle Scholar
  41. Yamauchi, T., Kamon, J., Waki, H., Murakami, K., Motojima, K., Komeda, K., Ide, T., Kubota, N., terauchi, Y., Tobe, K., Miki, H., Tsuchida, A., Akanuma, Y., Nagai, R., Kimura S., and Kadowaki T., The mechanisms by which both heterozygous peroxisome proliferators-activated receptor gamma (PPAR gamma) deficiency and PPAR gamma agonist improve insulin resistance.J. Biol. Chem., 276, 41245–41254 (2001).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2006

Authors and Affiliations

  1. 1.Department of MicrobiologySt. Marianna University School of MedicineKanagawaJapan

Personalised recommendations