Archives of Pharmacal Research

, 29:746 | Cite as

Antifungal effect of amentoflavone derived fromSelaginella tamariscina

  • Hyun Jun Jung
  • Woo Sang Sung
  • Soo-Hwan Yeo
  • Hyun Soo Kim
  • In-Seon Lee
  • Eun-Rhan Woo
  • Dong Gun Lee
Articles Drug Development


Amentoflavone is a plant biflavonoid that was isolated from an ethyl acetate extract of the whole plant ofSelaginella tamariscina (Beauv.) spring. 1D and 2D NMR spectroscopy including DEPT, HMQC, and HMBC were used to determine its structure. Amentoflavone exhibited potent antifungal activity against several pathogenic fungal strains but had a very low hemolytic effect on human erythrocytes. In particular, amentoflavone induced the accumulation of intracellular trehalose onC. albicans as a stress response to the drug, and disrupted the dimorphic transition that forms pseudo-hyphae during pathogenesis. In conclusion, amentoflavone has great potential to be a lead compound for the development of antifungal agents.

Key words

Biflavonoid Amentoflavone Antifungal activity Dimorphic transition 


  1. Attfield, P. V., Trehalose accumulates inSaccharomyces cerevisiae during exposure to agents that induce heat shock response.FEBS Lett., 225, 259–263 (1987).PubMedCrossRefGoogle Scholar
  2. Baureithel, K. H., Buter, K. B., Engesser, A., Burkard, W., and Schaffner, W., Inhibition of benzodiazepine binding in vitro by amentoflavone, a constituent of various species ofHypericum.Pharm. Acta Helvetica, 72, 153–157 (1997).CrossRefGoogle Scholar
  3. Benaroudj, N., Lee, D. H., and Goldberg, A. L., Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals.J. Biol. Chem., 276, 24261–24267 (1987).CrossRefGoogle Scholar
  4. Calerone, R. A. and Fonzi, W. A., Virulence factors ofCandida albicans.Trends Microbiol., 9, 327–335 (2001).CrossRefGoogle Scholar
  5. Carlo, G. D., Masclo, N., Izzo, A. A., and Capasso, F., Flavonoids: Old and new aspects of a class of natural therapeutic drugs.Life Sci., 65, 337–353 (1999).PubMedCrossRefGoogle Scholar
  6. Elbein, A. D., Pan, Y. T., Oastuszak, I., and Carroll, D., New insights on trehalose: a multifunctional molecule.Glycobiology, 13, 17–27 (2003).CrossRefGoogle Scholar
  7. Gambhir, S. S., Geol, R. K., and Das Gupta, G., Anti-inflammatory & anti-ulcerogeinc activity of amentoflavone.Indian J. Med. Res., 85, 689–693 (1987).PubMedGoogle Scholar
  8. Gil, B., Sanz, M. J., Terencio, M. C., Gunasegaran, R., Paya, M., and Alcaraz, M. J., Morelloflavone, a novel biflavonoid inhibitor of human secretory phospholipase A2 with antiinflammatory activity.Biochem. Pharmacol., 53, 733–740 (1997).PubMedCrossRefGoogle Scholar
  9. Kim, H. K., Son, K. H., Chang, H. W., Kang, S. S., and Kim, H. P., Amentoflavone, a plant biflavone: a new potential antiinflammatory agent.Arch. Pharm. Res., 21, 406–410 (1998).PubMedCrossRefGoogle Scholar
  10. Kim, H. P., Mani, I., Iversen, L., and Ziboh, V. A., Effects of naturally-occurring flavonoids and biflavonoids on epidermal cyclooxygenase and lipoxygenase form guinea-pigs.Prostaglandins Leukot. Essent. Fatty Acids., 58, 17–24 (1998).PubMedCrossRefGoogle Scholar
  11. Krauze-Baranowska, M., Cisowski, W., Wiwart, M., and Madziar, B., Antifungal biflavones fromCupressocyparis leylandii.Planta Med., 65, 572–573 (1999).PubMedCrossRefGoogle Scholar
  12. Krauze-Baranowska, M. and Wiwart, M., Antifungal activity of biflavones fromTaxus baccata andGinkgo biloba.Z Naturforsch [C]., 58, 65–69 (2003).Google Scholar
  13. Lee, D. G., Hahm, K.-S., and Shin, S. Y., Structure and fungicidal activity of a synthetic antimicrobial peptide, P8, and its truncated peptides.Biotech. Lett., 26, 337–341 (2004).CrossRefGoogle Scholar
  14. Lee, D. G., Park, Y., Keon, P. I., Jeong, H. G., Woo, E.-R., and Hanm, K.-S., Influence on the plasma membrane ofCandida albicans by HP(2-9)-magainin 2(1-2) hybrid peptide.Biochem. Biophys. Res. Commun. 297, 885–889 (2002).PubMedCrossRefGoogle Scholar
  15. Lee, H. S., Oh, W. K., Kim, B. Y., Ahn, S. C., Kang, D. O., Shin, D. I., Kim, J., Mheen, T. I., and Ahn, J. S., Inhibition of phospholipase C gamma 1 activity by amentoflavone isolated fromSelaginella tamariscina.Planta Med., 62, 293–296 (1996).PubMedCrossRefGoogle Scholar
  16. Lin, L., Kuo, U., and Chou, C., Cytotoxic Biflavonoids fromSelaginella delicatula.J. Nat. Prod., 63, 627–630 (2000).PubMedCrossRefGoogle Scholar
  17. Lin, Y. M., Flavin, M. T., Schure, R., Chen, F. C., Sidwell, R., Barnard, D. L., Huffman, J. H., and Kern, E. R., Antiviral activities of biflavonoids.Planta med., 65, 120–125 (1999).PubMedCrossRefGoogle Scholar
  18. Lobstein-Guth, A., Briancon-Scheid, F., Victoire, C., Haag-Berrurier, M., and Anton, R., Isolation of amentoflavone fromGinkgo biloba.Planta Med., 54, 555–556 (1998).CrossRefGoogle Scholar
  19. Ma, S. C., But, P. P., Ooi, V. E., He, Y. H., Lee, S. H., Lee, S. F., and Lin, R. C., Antiviral amentoflavone fromSelaginella sinensis.Biol. Pharm. Bull., 24, 311–312 (2001).PubMedCrossRefGoogle Scholar
  20. Markham, K. R., Sheppard, C., and Geiger, H.,13C NMR studies of some naturally occurring amentoflavone and hinokiflavone biflavonoids.Phytochemistry, 26, 3335–3337 (1987).CrossRefGoogle Scholar
  21. Matsuoka, S. and Murata, M., Cholesterol markedly reduces ion permeability induced by membrane-bound amphotericin B.Biochim. Biophys. Acta., 1564, 429–434 (2002).PubMedCrossRefGoogle Scholar
  22. Mclain, N., Ascanio, R., Baker, C., Strohaver, R. A., and Dolan, J. W., Undeclenic acid inhibits morphogenesis ofCandida albicans.Antimicrob. Agents Chemother., 44, 2873–2875 (2000).PubMedCrossRefGoogle Scholar
  23. Paik, S. K., Yun, H. S., Sohn, H., and Jin, I., Effect of trehalose accumulation on the intrinsic and acquired thermotolerance on a natural isolateSaccharomyces cerevisiae KNU5377.J. Microbiol. Biotechnol., 13, 85–89 (2003).Google Scholar
  24. Schulze, U., Larsen, M. E., and Villadsen, J., Determination of intracellular trehalose and glycogen inSaccharomyces cerevisiae.Anal. Biochem., 228, 143–149 (1995).PubMedCrossRefGoogle Scholar
  25. Sengupta, S., Jana, M. L., Sengupta, D., and Naskar, A. K., A note on the estimation of microbial glycosidase activities by dinitrosalicylic acid reagent.Appl. Microbiol. Biotech., 53, 732–735 (2000).CrossRefGoogle Scholar
  26. Shin, S. Y., Kang, S., Lee, D. G., Eom S. H., Song, W. K., and Kim, J. I., CRAMP analogues having potent antibiotic activity against bacterial, fungal, and tumor cells without hemolytic activity.Biochem. Biophys. Res. Commun., 275, 904–909 (2000).PubMedCrossRefGoogle Scholar
  27. Silva, G. L., Chai, H., Gupta, M. P., Farnsworth, N. R., Cordell, G. A., Pezzuto, J. M., Beecher, C. W., and Kinghorn, A. D., Cytotoxic biflavonoids fromSelaginella willdenowii.Phytochemistry, 40, 129–134 (1995).PubMedCrossRefGoogle Scholar
  28. Woo, E.-R., Lee, J. Y., Cho, I. J., Kim, S. G., and Kang, K. W., Amentoflavone inhibits the induction of nitric oxide synthase by inhibiting NF-kappaB activation in macrophages.Pharmacol. Res., 51, 539–546 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2006

Authors and Affiliations

  • Hyun Jun Jung
    • 1
  • Woo Sang Sung
    • 1
    • 2
  • Soo-Hwan Yeo
    • 3
  • Hyun Soo Kim
    • 3
  • In-Seon Lee
    • 3
  • Eun-Rhan Woo
    • 4
  • Dong Gun Lee
    • 1
  1. 1.Department of Microbiology, College of Natural SciencesKyungpook National UniversityDaeguKorea
  2. 2.Agro-Biotechnology Education CenterKyungpook National UniversityDaeguKorea
  3. 3.The Center for Traditional Microorganism Resources (TMR)Keimyung UniversityDaeguKorea
  4. 4.College of PharmacyChosun UniversityGwangjuKorea

Personalised recommendations