Archives of Pharmacal Research

, Volume 21, Issue 2, pp 89–105

Current status of anti-HBV chemotherapy

  • Joon H. Hong
  • Yongseok Choi
  • Byoung K. Chun
  • Kyeong Lee
  • Chung K. Chu


In the past decade, significant progress has been achieved in the battle against hepatitis B virus. In addition to the immunomodulating agents such as interferon-α and thymosin, many novel antiviral agents have been discovered, among which nucleoside analogues are the main-stay. New-generation compounds such as 3TC and famciclovir have shown promise in the treatment of patients chronically infected by this virus, and are on the line for approval. However, viral rebound after cessation of therapy still remains a major problem. Additionally, the reports on the drug resistance to these antiviral agents suggest that combination therapy will be the eventual strategy (Bartholomewet al., 1997; Tippleset al., 1996). Therefore, developments of safe and effective antiviral agents which do not cross-resist with currently available antiviral drugs are still much needed.

Key words

Hepatitis B virus Immunomodulationg agents Chemotherapy Nucleoside analogues 3TC Famciclovir Resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Abbruzzese, J. L., Schmidt, S., Raber, M. N., Levy, J. K., Castellanos, A. M., Legha, S. S. and Krakoff, I. H., Phase I trial of 1-(2-deoxy-2-fluoro-1-beta-D-arabinofuranosyl)-5-methyluracil (FMAU) terminated by severe neurologic toxicity.Invest. New Drugs, 7, 195–201 (1989).PubMedCrossRefGoogle Scholar
  2. Acs, G., Sells, M. A., Purcell, R. H., Price, P., Engle, R., Shapiro, M. and Popper, H., Hepatitis B virus produced by transfected Hep G2 cells causes hepatitis in chimpanzees.Proc. Natl. Acad. Sci. USA, 84, 4641–4644 (1987).PubMedCrossRefGoogle Scholar
  3. Ashwell, G. and Harford, J., Carbohydrate-specific receptors of the liver.Ann. Rev. Biochem., 51, 531–534 (1982).PubMedCrossRefGoogle Scholar
  4. Bartholomew, M. M., Jansen, R. W., Jeffers, L. J., Reddy, K. R., Johnson, L. C., Bunzendahl, H., Condreay, L. D., Tzakis, A. G., Schiff, E. R. and Brown, N. A., Hepatitis B virus resistance to lamivudine given for recurrent infection after orthotopic liver transplantation.Lancet 349, 20–22 (1997).PubMedCrossRefGoogle Scholar
  5. Beach, J. W., Jeong, L. S., Alves, A. J., Pohl, D., Kim, H. O., Chang, C.-H., Doong, S.-L., Schinazi, R. F., Cheng, Y.-C. and Chu, C. K., Synthesis of enantiomerically pure (2′R, 5′S)-(-)-1-(2-hydroxymethyl-oxathiolan-5-yl)cytosine as a potent antiviral agent against hepatitis B virus (HBV) and human immunodeficiency virus (HIV).J. Org. Chem., 57, 2217–2219 (1992).CrossRefGoogle Scholar
  6. Belleau, B., Dixit, D., Nguyen-Ga, N. and Kraus, J.-L.,International Conference on AIDS. Montreal, Canada, June 4–9, paper no. T.C.O.1. (1990).Google Scholar
  7. Benhamou, Y., Dohin, E. and Lunel-Fabiani, F., Efficacy of lamivudine on replication of hepatitis B virus in HIV-infected patients.Lancet, 345, 396–397 (1995).PubMedCrossRefGoogle Scholar
  8. Berk, L., Schalm, S. W., De Man, R. A., Heijtink, R. A., Berthelot, P., Brechot, C., Boboc, B., Degos, F., Maecelling, P., Behamou, J.-P., Hess, G., Rossol, S., Meyer, B. M., Berlinger, C., Stalder, G. A., Den Ouden-Muller, J. W. and De Jong, M., Failure of acyclovir to enhance the antiviral effect of alpha lymphoblastoid interferon on HBeAg-seroconversion in chronic hepatitis B: a multi-center randomized controlled trial.J. Hepatol., 14, 305–309 (1992).PubMedCrossRefGoogle Scholar
  9. Bisacchi, G. S., Chao, S. T., Bachard, C., Daris, J. P., Innaimo, S., Jacobs, G. A., Kocy, O., Lapointe, P., Martel, A., Merchant, Z., Slusarchyk, W. A., Sundeen, J. E., Youg, M. G., Colonno, R. and Zahler, R., BMS-200475, a novel carbocyclic 2′-deoxyguanosine analogue with potent and selective anti-hepatitis B virus activityin vitro.Bioorg. Med. Chem. Lett., 7, 127–132 (1997).CrossRefGoogle Scholar
  10. Bruch, H. R., Korn, A., Klein, H., Markus, R., Malmus, K., Baumgarten, R., and Muller, R., Treatment of chronic hepatitis B with interferon alpha-2b and interleukin-2.J. Hepatol., 17, S52-S55 (1993).PubMedCrossRefGoogle Scholar
  11. Chen, C.-H., Vazquez-Padua, M. and Cheng, Y.-C. Effect of anti-huamn immunodeficiency virus nucleoside analogues on mitochondrial DNA and its implication for delayed toxicity.Molecular Pharmacol., 39, 625–628 (1991).Google Scholar
  12. Cheng, Y. C., Huang, E. S., Lin, J. C., Mar, E. C., Pagano, J. S., Dutschman, G. E. and Grill, S. P., Unique spectrum of activity of 9-(1,3-dihydroxy-2-propoxymethyl) guanine against herpes virusesin vitro and its mode of action against herpes simplex virus type 1.Proc. Natl. Acad. Sci. USA, 80, 2767–2770 (1983).PubMedCrossRefGoogle Scholar
  13. Chien, R. N. and Liaw, Y. F., Drug therapy in patients with chronic type B hepatitis.J. Formos. Med. Assoc., 94, suppl. 1, S1-S9 (1995).PubMedGoogle Scholar
  14. Chu, C. K., Ahn, S. K., Kim, H. O., Beach, J. W., Alves, A. J., Jeong, L. S., Islam, Q., Van Roey, P. and Schinazi, R. F., Asymmetric synthesis of enantiomerically pure (-)-β-D-dioxolane-thymine and its anti-HIV activity.Tetrahedron Lett., 32, 3791–3794 (1991).CrossRefGoogle Scholar
  15. Chu, C. K., Ma, T. W., Shanmuganathan, K., Wang, C.-G., Xiang, Y.-J., Pai, S. B., Yao, G.-Q., Sommadossi, J.-P. and Cheng, Y.-C., Use of 2′-fluoro-5-methyl-β-L-arabinofuranosyluracil as a novel antiviral agent for hepatitis B virus and Epstein-Barr virus.Antimicrob. Agents Chemother., 39, 979–981 (1995).PubMedGoogle Scholar
  16. Civitico, G., Shaw, T. and Locarnini, S., Interaction between ganciclovir and foscarnet as inhibitors of duck hepatitis B virus replicationin vitro.Antimicrob. Agents Chemother., 40, 1180–1185 (1996).PubMedGoogle Scholar
  17. Clark, J. M., Genovesi, E. V., Medina, I., Lamb, L., Taylor, D., Standring, D., Seifer, M., Innaimo, S. and Collono, R. J. Maintenance therapy with BMS-200475 in the woodchuck model of chronic hepatitis B infection.Abstracts of 37th ICAAC. Canada, September 28-October 1, pp 215 (1997).Google Scholar
  18. Colonno, R. J., Innaimo, S. F., Seifer, M., Genovesi, E., Clark, J., Yamanaka, R., Hamatake, B., Terry, B., Standring, D., Bisacchi, G., Sundeen, J. and Zahler, R., Identification of BMS-200475 as a novel and potent inhibitor of hepatitis B virus replication.Abstracts of Conf. on Antiviral Res. Atlanta, 34, A51, 32 (1997).Google Scholar
  19. Cui, L., Schinazi, R. F., Gosselin, G., Imbach, J.-L., Chu, C. K., Rando, R. F., Revankar, G. R. and Sommadossi, J.-P., Effect of β-enantiomeric and racemic nucleoside analogues on mitochondrial functions in HepG2 cells.Biochem. Pharmacol., 52, 1577–1584 (1996).PubMedCrossRefGoogle Scholar
  20. Cui, L., Yoon, S., Schinazi, R. F. and Sommadossi, J.-P., Cellular and molecular events leading to mitochondrial toxicity of 1-(2-deoxy-2-fluoro-1-β-D-arabinofuranosyl)-5-iodouracil in human liver cells.J. Clin. Invest., 95, 555–563 (1995).PubMedCrossRefGoogle Scholar
  21. De Clercq, E., Sakuma, T., Baba, M., Pauwels, R., Balzarini, J., Rosenberg, I. and Holy, A., Antiviral activity of phosphylmethoxyalkyl derivatives of purines and pyrimidines.Antiviral Res., 8, 261–272 (1987).PubMedCrossRefGoogle Scholar
  22. Dienstag, J. L., Perrillo, R. P., Schiff, E. R., Bartholomew, M., Vicary, C. and Rubin, M., A preliminary trial of lamivudine for chronic hepatitis B infection.New Engl. J. Med., 333, 1657–1661 (1995).PubMedCrossRefGoogle Scholar
  23. Doong, S.-L., Tsai, C. H., Schinazi, R. F., Liotta, D. C. and Cheng, Y.-C., Inhibition of the replication of hepatitis B virusin vitro by 2′,3′-dideoxy-3′-thiacytidine and related analogues.Proc. Natl. Acad. Sci. USA., 88, 8495–8499 (1991).PubMedCrossRefGoogle Scholar
  24. Dusheiko, G. M., Treatment and prevention of chronic viral hepatitis.Pharmacol. Ther., 65, 47–73 (1995).PubMedCrossRefGoogle Scholar
  25. Fisher, K. P. and Tyrrell, D. L. J., Generation of duck hepatitis B virus polymerase mutants through sitedirected mutagenesis which demonstrate resistance to lamivudine (-)-β-L-2′,3′-dideoxy-3′-thiacytidinein vitro.Antimicrob. Agents Chemother., 40, 1957–1960 (1996).Google Scholar
  26. Fiume, L., Busi, C., Mattioli, A., Balboni, P. G. and Barbanti-Brodano, G., Hepatocyte targeting of adenine-9-β-D-arabinofuranoside 5′-monophosphate (ara-AMP) coupled to lactosaminated albumin.FEBS Lett., 129, 261–264 (1981).PubMedCrossRefGoogle Scholar
  27. Fiume, L., Di Stefano, G., Busi, C., Mattioli, A., Rapicetta, M., Giuseppetti, R., Ciccaglione, A. and Argentini, C., Inhibition of woodchuck hepatitis virus replication by adenine arabinoside monophosphate coupled to lactosaminated poly-L-lysine and administered by intramuscular route.Hepatology, 22, 1072–1077 (1995).PubMedGoogle Scholar
  28. Fourel, I., Cullen, J., Saputelli, J., Aldrich, C., Schaffer, P., Averett, D., Pugh, J. and Mason, W., Evidence that hepatocyte turnover is required for rapid clearance of duck hepatitis B virus during antiviral therapy of chronically infected ducks.J. Virol., 68, 8321–8330 (1994).PubMedGoogle Scholar
  29. Fourel, I., Hantz, O., Watanabe, K. A., Jacquet, C., Chomel, B., Fox, J. and Trepo, C., Inhibitory effects of 2′-fluoro arabinosyl-pyrimidine nucleosides on woodchuck hepatitis virus replication in chronically infected woodchucks.Antimicrob. Agents Chemother., 34, 473–475 (1990).PubMedGoogle Scholar
  30. Fourel, I., Li, J., Hantz, O., Jacquet, C., Fox, J. J. and Trepo, C., Effects of 2′-fluorinated arabinosyl-pyrimidine nucleosides on duck hepatitis B virus DNA level in serum and liver of chronically infected ducks.J. Med. Virol. 37, 122–126 (1992).PubMedCrossRefGoogle Scholar
  31. Fourel, I., Saputelli, J., Schaffer, P. and Mason, W. S., The carbocyclic analogue of 2′-deoxyguanosine induces a prolonged inhibition of duck hepatitis B virus DNA synthesis in primary hepatocyte cultures and in the liver.J. Virol., 68, 1059–1065 (1994).PubMedGoogle Scholar
  32. Fridland, A., Robbins, B. L. and Srinivas, R. V., Antiretroviral activity and metabolism of bis(POC)PMPA, an oral bioavailable prodrug of PMPA.Antiviral Res., 34, A49 (1997).Google Scholar
  33. Fried, M. W., Di Bisceglie, A. M., Straus, S. E., Savarese, B., Beames, M. P. and Hoofnagle, J. H.,Hepatology, 16, 127A (1992).CrossRefGoogle Scholar
  34. Fried, M. W., Fong, T.-L., Swain, M. G., Park, Y., Beames, M. P., Banks, S. M., Hoofnagle, J. H. and Di Bisceglie, A. M., Therapy of chronic hepatitis B with a 6-month course of ribavirin.J. Hepatol., 21, 145–150 (1994).PubMedCrossRefGoogle Scholar
  35. Fried, M. W., Korenman, J. C., Di Bisceglie, A. M., Park, Y., Waggoner, J. G., Mitsuya, H., Hartman, N. R., Yarchoan, R., Broder, S. and Hoofnagle, J. H., A pilot study of 2′,3′-dideoxyinosine for the treatment of chronic hepatitis B.Hepatology, 16, 861–864 (1992).PubMedCrossRefGoogle Scholar
  36. Furman, P. A., Davis, M., Liotta, D. C., Paff, M., Frick, L. W., Nelson, D. J., Dornsife, R. E., Wurster, J. A., Wilson, L. J., Fyfe, J. A., Tuttle, J. V., Miller, W. H., Condreay, L., Averette, D. R., Schinazi, R. F. and Painter, G. R., The anti-hepatitis B virus activities, cytotoxicities, and anabolic profiles of the (-) and (+) enantiomers of cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine.Antimicrob. Agents Chemother., 36, 2686–2692 (1992).PubMedGoogle Scholar
  37. Gish, R. G., Lau, J. Y., Brooks, L., Fang, J. W., Steady, S. L., Imperial, J. C., Garcia, K. R., Esquivel, C. O. and Keeffe, E. B., Ganciclovir treatment of hepatitis B virus infection in liver transplant recipients.Hepatology, 23, 1–7 (1996).PubMedCrossRefGoogle Scholar
  38. Gosselin, G., Schinazi, R. F., Sommadossi, J.-P., Mathe, C., Bergogne, M.-C., Aubertin, A.-M., Kim, A. and Imbach, J.-L., Anti-human immunodeficiency virus activities of the β-L-enantiomer of 2′,3′-dideoxycytidine and its 5-fluoro derivativein vitro.Antimicrob. Agents Chemother., 38, 1292–1297 (1994).PubMedGoogle Scholar
  39. Grove, K. L., Guo, X., Liu, S.-H., Gao, Z., Chu, C. K. and Cheng, Y.-C., Anticancer activity of β-L-dioxolane-cytidine, a novel nucleoside analogue with the unnatural L-configuration.Cancer Res., 55, 3008–3011 (1995).PubMedGoogle Scholar
  40. Guidotti, L. G., Guilhot, S. and Chisari, F. V., Interleukin-2 and alpha/beta interferon down-regulate hepatitis B virus gene expression in vivo by tumor necrosis factor-dependent and independent pathways.J. Virol., 68, 1265–1270 (1994).PubMedGoogle Scholar
  41. Hantz, O., Allaudeen, H. S., Ooka, T., De Clerq, E. and Trepo, C., Inhibition of human and woodchuck hepatitis virus DNA polymerase by the triphosphates of acyclovir, 1-(2′-deoxy-2′-fluoro-β-D-arabinofuranosyl)-5-iodocytosine and E-5-(2-bromovinyl)-2′-deoxyuridine.Antiviral Res., 4, 187–199 (1984).PubMedCrossRefGoogle Scholar
  42. Hantz, O., Borel, C., Trabaud, C., Zoulim, F., Dessolin, J., Camplo, M., Vlieghe, P., Bouygues, M., Trepo, Christian. and Kraus, J. L., Selective inhibition of the duck hepatitis B virus by a new class tetraazamacrocycles.Antimicrob. Agents Chemother. 41, 2579–2581 (1997).PubMedGoogle Scholar
  43. Heijtink, R. A., De Wilde, G. A., Kruining, J., Berk, L., Balzarini J., De Clerq, E., Holy, A. and Schalm, S. W., Inhibitory effect of 9-(2-phosphanylmethoxyethyl)-adenine (PMEA) on human and duck hepatitis B virus infection.Antiviral Res., 21, 141–153 (1993).PubMedCrossRefGoogle Scholar
  44. Helgstrand, E., Eriksson, B., Johansson, N. G., Lannero, B., Larsson, A., Misiorny, A., Noren, J. O., Sjoberg, B., Stenberg, K., Stening, G., Stridh, S., Oberg, B., Alenius, S. and Philipson, L., Trisodium phosphonoformate, a new antiviral compound.Science, 201, 819–821 (1978).PubMedCrossRefGoogle Scholar
  45. Hitchcock, M. J. M., Jaffe, H. S., Martin, J. C. and Stagg, R. J., Cidofovir-a new agent with potent antiherpesvirus activity.Antiviral Chem. Chemother., 7, 115–127 (1996).Google Scholar
  46. Hoofnagle, J. H., Hanson, R. G., Minuk, G. Y., Pappas, S. C., Schafer, D. F., Dusheiko, G. M., Straus, S. E., Popper, H. and Jones, E. A., Randomized controlled trial of adenine arabinoside monophosphate for chronic type B hepatitis.Gastroenterology, 86, 150–157 (1984).PubMedGoogle Scholar
  47. Isley, D. D., Lee, S.-H., Miller, W. H. and Kutchta, R. D., Acyclic guanosine analogs inhibit DNA polymerase α, β and ε with very different potencies and have unique mechanisms of action.Biochemistry, 34, 2504–2510 (1995).CrossRefGoogle Scholar
  48. Jacyna, M. R. and Thomas, H. C., Antiviral therapy: hepatitis B.Br. Med. Bull., 46, 368–382 (1990).PubMedGoogle Scholar
  49. Jansen, R. W., Johnson, L. C. and Averett, D. R., High-capacityin vitro assessment of anti-hepatitis B virus compound selectivity by a virion-specific polymerase chain reaction assay.Antimicrob. Agents Chemother., 37, 441–447 (1993).PubMedGoogle Scholar
  50. Kim, H. O., Schinazi, R. F., Shanmuganathan, K., Jeong, L. S., Beach, J. W., Nampalli, S., Cannon, D. L. and Chu, C. K., L-β-(2S, 4S)- and L-β-(2S, 4R)-Dioxolanyl nucleosides as potential anti-HIV agents: asymmetric synthesis and structure-activity relationships.J. Med. Chem., 36, 519–528 (1993).PubMedCrossRefGoogle Scholar
  51. Kim, H. O., Shanmuganathan, K., Alves, A. J., Jeong, L. S., Beach, J. W., Schinazi, R. F., Chang, C.-N., Cheng, Y.-C. and Chu, C. K., Potent anti-HIV and anti-HBV activities of (-)-L-β-dioxolane-C and (+)-L-β-dioxolane-T and their asymmetric synthesis.Tetrahedron Lett., 33, 6899–6902 (1992).CrossRefGoogle Scholar
  52. Kitos, T. E., Huang, J. S., Tovell, D. and Tyrrell, D. L. J., A comparison of drug metabolism and antihepadnavirus activity in twoin vitro cell culture test systems. Abstracts, Paris, France (1991).Google Scholar
  53. Korba, B. E. and Gerin, J. L., Antisense oligonucleotides are effective inhibitors of hepatitis B virus replicationin vitro.Antiviral Res., 28, 225–242 (1995).PubMedCrossRefGoogle Scholar
  54. Korba, B. E. and Milman, G., A cell culture assay for compounds which inhibit hepatitis B virus replication.Antiviral Res., 15, 217–228 (1991).PubMedCrossRefGoogle Scholar
  55. Korba, B. E., Baldwin, B., Cote, P., Schinazi, R., Gangemi, D., Gerin, J. L. and Tennant, B. C., Efectiveness of combination therapies with 3TC, famciclovir and alpha interferon against woodchuk hepatitis virus replication in chronically infected woodchuck: modelfor potential anti-HBV treatments. Abstracts of 37th ICAAC. Canada, September 28-October 1, pp. 219 (1997).Google Scholar
  56. Korba, B. E. and Boyd, M. R., Penciclovir is an effective inhibitor of hepatitis B virus replicatorin vitro.Antimicrob. Agents Chemother., 40, 1282–1284 (1996).PubMedGoogle Scholar
  57. Korenman, J., Baker, B., Waggoner, J., Everhart, J. E., Di Bisceglie, A. M. and Hoofnagle, J. H., Long-term remission of chronic hepatitis B after alpha-interferon therapy.Ann. Int. Med., 114, 629–634 (1991).PubMedGoogle Scholar
  58. Kreis, W., Damin, L., Colacino, J., Lopez, C.,In vitro metabolism of 1-β-D-arabinofuranosylcytosine and 1-β-D-2′-fluoroarabino-5-iodocytosine in normal and herpes simplex type 1 infected cells.Biochem. Pharm., 31, 767–773 (1982).PubMedCrossRefGoogle Scholar
  59. Kruining, J., Heijtink, R. A. and Schalm, S. W., Antiviral agents in hepatitis B virus transfected cell lines: inhibitory and cytotoxic effect related to time and treatment.J. Hepatol., 22, 263–267 (1995).PubMedCrossRefGoogle Scholar
  60. Lee, B., Luo, W. X., Suzuki, S., Robins, M. J. and Tyrrell, D. L.,In vitro andin vivo comparison of the abilities of purine and pyrimidine 2′,3′-dideoxynucleosides to inhibit duck hepadnavirus.Antimicrob. Agents Chemother., 33, 336–339 (1989).PubMedGoogle Scholar
  61. Lin, T. S., Luo, M. Z., Pai, S. B., Dutschuman, G. E. and Cheng, Y.-C., Synthesis and biological evaluation of 2′,3′-dideoxy-L-pyrimidine nucleosides as potential antiviral agents against human immunodeficiency virus (HIV) and hepatitis B virus (HBV).J. Med. Chem., 37, 798–803 (1994).PubMedCrossRefGoogle Scholar
  62. Lin, T. S., Luo, M.-Z., Liu, M.-C., Zhu, Y.-L., Gullen, E., Dutschman, G. E. and Cheng, Y.-C., Design and synthesis of 2′,3′-dideoxy-2′,3′-didehydro-β-L-cytidine (β-L-d4C) and of 2′,3′-dideoxy-2′,3′-didehydro-β-L-5-fluorocytidine (β-L-Fd4C), two exceptionally potent inhibitors of human hepatitis B virus (HBV) and potent inhibitors of human immunodeficiency virus (HIV)in vitro.J. Med. Chem., 39, 1757–1759 (1996).PubMedCrossRefGoogle Scholar
  63. Ling, R., Mutimer, D., Ahmed, M., Boxall, E. H., Elias, E., Dusheiko, G. M. and Harrison, T. J., Selection of mutations in the hepatitis B virus polymerase during therapy of transplant recipients with lamivudine.Hepatology, 24, 711–713 (1996).PubMedCrossRefGoogle Scholar
  64. Lopez, C., Watanabe, K. A. and Fox, J. J., 2′-Fluoro-5-iodoaracytosine, a potent and selective anti-herpesvirus agent.Antimicrob. Agents Chemother., 17, 803–806 (1980).PubMedGoogle Scholar
  65. Luscombe, C., Pedersen, J., Uren, E. and Locarnini, S., Long-term ganciclovir chemotherapy for congenital duck hepatitis B virus infection in vivo: effect on intrahepatic-viral DNA, RNA, and protein expression.Hepatology, 24, 766–773 (1996).PubMedGoogle Scholar
  66. Macilwain, C., NIH, FDA seek lessons from the hepatitis B drug trial deaths.Nature, 364, 275–275 (1993).PubMedGoogle Scholar
  67. Marques, A. R., Lau, D., Mckenzie, R., Strus, S. and Hoofnagle, J., Combination therapy with famciclovir and interferon for the treatment of chronic hepatitis B. Abstracts of 37th ICAAC. Canada, September 28-October 1, pp 219 (1997).Google Scholar
  68. Martin, J. C., Dvorak, C. A., Smee, D. F., Matthews, T. R. and Verheyden, J. P. H., 9-(1,3-dihydroxy-2-propoxymethyl)guanine: a new potent and selective antiherpes agent.J. Med. Chem., 26, 759–761 (1983).PubMedCrossRefGoogle Scholar
  69. Martin, P., Kassianides, C., Hoofnagle, J. H., Mitsuya, H. and Border, S., Effects of 2′,3′-dideoxyadenosine on duck hepatitis B virus.Hepatology, 8, A1329 (1988).Google Scholar
  70. Matthes, E., Von Janta-lipinski, M., Will, H., Schroder, H. C., Merz, H., Steffen, R. and Muller, W. E. G., Inhibition of hepatitis B virus production by modified 2′,3′-dideoxy-thymidine and 2′,3′-dideoxy-5-methyl-cytidine derivativesin vitro andin vivo studies.Biochem. Pharmacol., 43, 1571–1577 (1992).PubMedCrossRefGoogle Scholar
  71. Miller, R. H., Kaneko, S., Chung, C. T., Girones, R. and Purcell, R. H., Compact organization of the hepatitis B virus genome.Hepatology, 9, 322–327 (1989).PubMedCrossRefGoogle Scholar
  72. Minuk, G. Y., German, G. B., Bernstein, C., Benarroch, A., Gauthier, T. and Sekla, L., A pilot study of steroid withdrawal followed by oral acyclovir in the treatment of chronic type B hepatitis.Clin. Invest. Med., 15, 506–512 (1992).PubMedGoogle Scholar
  73. Mutchnick, M. G., Appelman, H. D., Chung, H. T., Aragona, E., Gupta, T. P., Cummings, G. D., Waggoner, J. G., Hoofnagle, J. H. and Shafritz, D. A., Thymosin treatment of chronic hepatitis B: a placebo-controlled pilot trial.Hepatology, 14, 409–415 (1991).PubMedCrossRefGoogle Scholar
  74. Nicoll, A. J., Colledge, D. L., Wang, Y. Y., Toole, J. J., Dean, J. K., Angus, P. W., Smallwood, R. A. and Locarnini, S. A., PMEA, an acyclic phosphonate nucleoside analogue with activity against duck hepatitis B virusin vivo.Hepatology, 220A, 375 (1996).Google Scholar
  75. Norbeck, D. W., Spanton, S., Broder, S. and Mitsuya, H., (±)-Dioxolane-T {(±)-1-[(2β,4β)-2-(hydroxymethyl-4-dioxolanyl]thymine}. A new 2′,3′-dideoxy nucleoside prototype within vitro activity against HIV.Tetrahedron Lett., 30, 6263–6266 (1989).CrossRefGoogle Scholar
  76. Offensperger, W. B., Blum, H. E. and Gerok, W., Molecular therapeutic strategies in hepatitis B virus infection.Clin. Invest. 72, 737–741 (1994).CrossRefGoogle Scholar
  77. Pai, S. B., Liu, S.-H., Zhu, Y.-L., Chu, C. K. and Cheng, Y.-C., Inhibition of hepatitis B virus by a novel L-nucleoside, 2′-fluoro-5-methyl-β-L-arabinofuranosyl uridine.Antimicrob. Agents and Chemother., 40 380–386 (1996).Google Scholar
  78. Parker, W. B. and Cheng, Y.-C., Disruption of energy metabolism and mitochondrial function. InNeurotoxicology: Approaches and Methods. pp. 483–490. Ed. Academic Press, Inc. 1995.Google Scholar
  79. Parker, W. B. and Cheng, Y.-C., Mitochondrial toxicity of antiviral nucleoside analogues.J. NIH Res., 6, 57–61 (1994).Google Scholar
  80. Peek, S. F., Jacob, J. R., Tochkov, I. A., Kobra, B. E., Gerin, J. L., Chu, C. K. and Tennant, B. C., Sustained antiviral activity of 1-(2-fluoro-methyl-β-L-arabinofuranosyl)uracil (L-FMAU) in the woodchuck model of hepatitis B virus (HBV) infection. Abstract of 37th ICAAC. Canada, September 28-October 1, pp. 215 (1997).Google Scholar
  81. Perry, C. M. and Wagstaff, A. J., Famciclovir: a review of its pharmacological properties and therapeutic efficacy in herpesvirus infections.Drugs, 50, 396–415 (1995).PubMedCrossRefGoogle Scholar
  82. Ponzetto, A., Fiume, L., Forzani, B., Song, S. Y., Busi, C., Mattioli, A., Spinelli, M., Smedile, A., Chiaberge, E., Bonino, F., Gervasi, G. B., Rapicetta, M. and Verme, G., Adenine arabinoside monophosphate and acyclovir monophosphate coupled to lactosaminated albumin reduce woodchuck hepatitis virus viremia at doses lower than do the unconjugated drugs.Hepatology, 14, 16–24 (1991).PubMedCrossRefGoogle Scholar
  83. Price, P. M., Banerjee, R. and Acs, G., Inhibition of the replication of hepatitis B virus by the carbocyclic analogue of 2′-deoxyguanosine.Proc. Natl. Acad. Sci. USA, 86, 8541–8544 (1989).PubMedCrossRefGoogle Scholar
  84. Price, P. M., Banerjee, R., Jeffrey, A. M. and Acs, G., The mechanism of inhibition of hepatitis B virus replication by the carbocyclic analogue of 2′-deoxyguanosine.Hepatology, 16, 8–12 (1992).PubMedCrossRefGoogle Scholar
  85. Purcell, R. H. and Gerin, J. L., Hepatitis B vaccines on the threshold.Am. J. Clin. Pathol., 70, 159–169 (1978).PubMedGoogle Scholar
  86. Rajagopalan, P. F., Boudinot, F. D., Chu, C. K., McClure, H. M. and Schinazi, R. F., Pharmacokinetics of (-)-β-D-2,6-diaminopurine dioxolane and its metabolite dioxolane guanosine in rhesus monkeys.Pharm. Res., 11, suppl. 381 (1994).Google Scholar
  87. Rajagopalan, P., Boudinot, F. D., Chu, C. K., Tennant, B. C., Baldwin, B. H. and Schinazi, R. F., Pharmacokinetics of (-)-β-D-2,6-diaminopurine dioxolane and its metabolite, dioxolane guanosine, in woodchucks (Marmota monax).Antiviral Chem. Chemother., 7, 65–70 (1996).Google Scholar
  88. Ryff, J. C., To treat or not to treat? The judicious use of interferon-α-2a for the treatment of chronic hepatitis B virus.J. Hepatology., 17, suppl. 3, S42-S46 (1993).CrossRefGoogle Scholar
  89. Schalm, S. W., Heijitink, R. A., Van Buuren, H. R. and De Man, R. A., Acyclovir, oral, intravenous and combined with interferon for chronic HBeAg-positive hepatitis.J. Hepatol., 3, suppl. 2, S137-S141 (1986).PubMedCrossRefGoogle Scholar
  90. Schalm, S. W., Heijitink, R. A., Van Buuren, H. R. and De Man, R. A., Lymphoblastoid alpha-interferon, weekly, daily and combined with acyclovir for chronic HBeAg-positive hepatitis.J. Hepatol., 3, suppl. 2, S189-S192 (1986).PubMedCrossRefGoogle Scholar
  91. Schinazi, R. F., McClure, H. M., Boudinout, F. D., Xiang, Y.-J. and Chu, C. K., Development of (-)-β-D-2, 6-diaminopurine dioxolane as a potential antiviral agent.Antiviral Res., 23, suppl. 81 (1994).Google Scholar
  92. Schinazi, R. F., McMillan, A., Cannon, D., Mathis, R., Lloyd, R. M., Peck, A., Sommadossi, J.-P., St Clair, M., Wilson, J., Furman, P. A., Painter, G., Choi, W. B. and Liotta, D. C., Selective inhibition of human immunodeficiency viruses by racemates and enatiomers ofcis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine.Antimicrob. Agents Chemother., 36, 2423–2431 (1992).PubMedGoogle Scholar
  93. Sells, M. A., Chen, M.-L. and Acs, G., Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA.Proc. Natl. Acad. Sci. USA, 84, 1005–1009 (1987).PubMedCrossRefGoogle Scholar
  94. Sells, M. A., Zelent, A. Z., Shvartsman, M. and Acs, G., Replicative intermediate of hepatitis B virus in HepG2 cells that produce infectious virions.J. Virol., 62, 2836–2844 (1988).PubMedGoogle Scholar
  95. Severini, A., Liu, X.-Y., Wilson, J. S. and Tyrrell, D. L. J., Mechanism of inhibition of duck hepatitis B virus polymerase by (-)-β-L-2′,3′-dideoxy-3′-thiacytidine.Antimicrob. Agents Chemother., 39, 1430–1435 (1995).PubMedGoogle Scholar
  96. Shaw, T., Amor, P., Civitico, G., Boyd, M. and Locarnini, S.,In vitro antiviral activity of penciclovir, a novel purine nucleoside, against duck hepatitis B virus.Antimicrob. Agents Chemother., 38, 719–723 (1994).PubMedGoogle Scholar
  97. Sheron, N., Lau, J. Y., Daniels, H. M., Webster, J., Eddleston, A. L., Alexander, G. J. and Williams, R., Tumor necrosis factor to treat chronic hepatitis B virus infection.Lancet, 336, 321–322 (1990).PubMedCrossRefGoogle Scholar
  98. Sidewell, R. W., Huffman, J. H., Khare, G. P., Allen, L. B., Witkowski, J. T. and Robins, R. K., Broadspectrum antiviral activity of virazole: 1-β-D-ribofuranosyl-1,2,4-tiazole-3-carboxamide.Science, 177, 705–706 (1972).CrossRefGoogle Scholar
  99. Sidewell, R. W., Revankar, G. R. and Robin, R. K., Ribavirin: review of a broad-spectrum antiviral agent. InViral Chemotherapy Vol. 2. Ed. by D. Shugar., pp. 49–108. Oxford: Pergamon Press (1985).Google Scholar
  100. Smith, K. O., Galloway, K. S., Kennell, W. L., Ogilvie, K. K. and Radatus, B. K., A new nucleoside analogue, 9-(1,3-dihydroxy-2-propoxymethyl)guanine, highly active in vitro against herpes simplex virus types 1 and 2.Antimicrob. Agents Chemother., 22, 55–61 (1982).PubMedGoogle Scholar
  101. Soudeyns, H., Yao, Q., Belleau, B., Kraus, J.-L., Nguyen-Ga, N., Spira, B. and Wainberg, M. A., Antihuman immunodeficiency virus type 1 activity andin vitro toxicity of 2′-deoxy-3′-thiacytidine (BCH-189), a novel heterocyclic nucleoside analogue.Antimicrob.Agents Chemother., 35, 1386–1390 (1991).Google Scholar
  102. Spector, S. A., McKinley, G. S., Lalezari, J. P., Samo, T., Andruczk, R., Follansbee, S., Sparti, P. D., Havlir, D. V., Simpson, G., Buhles, W., Wong, R. and Stempien, M. J., Oral ganciclovir for the prevention of cytomegalovirus disease in persons with AIDS.New. Engl. J. Med., 334, 1491–1497 (1996).PubMedCrossRefGoogle Scholar
  103. Starnes, M. C. and Cheng, Y.-C., Cellular metabolism of 2′,3′-dideoxycytidine, a compound active against human immunodeficiency virusin vitro.J. Biol. Chem., 262, 988 (1987).PubMedGoogle Scholar
  104. Sureau, C., Romet-Lemonne, J. L., Mullins, J. I. and Essex, M., Production of hepatitis B virus by a differentiated human hepatoma cell line after transfection with cloned circular HBV DNA.Cell, 47, 37–47 (1986).PubMedCrossRefGoogle Scholar
  105. Tennant, B., Jacob, J., Graham L. A., Peek, S., Du, J. and Chu, C. K., Pharmacokinetic and pharmacodynamic studies of 1-(2-fluoro-5-methyl-β-L-arabinofuranosyl)uracil (L-FMAU) in the woodchuck model of hepatitis B virus (HBV) infection.Antiviral Res., 34, A52, 36 (1997).Google Scholar
  106. Tenney, D. J., Yamanaka, G., Voss, S. M., Cianci, C. W., Tuomari, A. V., Sheaffer, A. K., Alam, M. and Colonno, R. J., Lobucavir is phosphorlated in human cytomegalovirus-infected and uninfected cell and inhibitis the viral DNA polymerase.Antimicrob. Agents Chemother., 41, 2680–2685 (1997).PubMedGoogle Scholar
  107. Thymosin alpha 1 shows efficacy for hepatitis B.Antiviral Agents Bull., 9, 194–195 (1996).Google Scholar
  108. Tiollais, P., Pourcel, C. and Dejean, A., The hepatitis B virus.Nature, 317, 489–495 (1985).PubMedCrossRefGoogle Scholar
  109. Tipples, G. A., Ma, M. M., Fisher, K. P., Bain, V. G., Kneteman, N. M. and Tyrrell, D. J. L., Mutation in HBV RNA-dependent DNA polymerase confers resistance to lamivudinein vivo.Hepatology, 24, 714–717 (1996).PubMedGoogle Scholar
  110. Touchette, N., HBV-drug deaths prompt restudy of similar antivirals.J. NIH Res., 5, 33–36 (1993).Google Scholar
  111. Tsiquaye, K., Slomka, M. J. and Maung, M., Oral famciclovir against duck hepatitis B virus replication in hepatic and nonhepatic tissues of ducklings infectedin vivo.J. Med. Virol., 42, 306–310 (1994).PubMedCrossRefGoogle Scholar
  112. Tsurimoto, T., Fujiyama, A. and Matsubara, K., Stable expression and replication of hepatitis B virus genome in an integrated state in a human hepatoblastoma cell line transfected with the cloned viral DNA.Proc. Natl. Acad. Sci. USA, 84, 444–448 (1987).PubMedCrossRefGoogle Scholar
  113. Tuttleman, J. S., Pugh, J. C. and Summers, J. W.,In vitro experimental infection of primary duck hepatocyte cultures with duck hepatitis B virus.J. Virol., 58, 17–25 (1986).PubMedGoogle Scholar
  114. Tyrrell, D. L. J., Fisher, K., Savani, K., Ian, W. and Jewell L., Treatment of chimpanzees and ducks with lamivudine, 2′,3′-dideoxy-3′-thiacytidine results in a rapid suppression of hepadnaviral DNA in sera.Clin. Invest. Med., 16, Suppl. 4, B77. Abstract (1993).Google Scholar
  115. Vere Hodge, R. A. and Cheng, Y. C., The mode of action of penciclovir.Antiviral Chem. Chemother., 4, 13–24 (1993).Google Scholar
  116. Wagstaff, A. J. and Bryson, H. M., Foscarnet, a reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic use in immunocompromised patients with viral infections.Drugs, 48, 199–226 (1994).PubMedCrossRefGoogle Scholar
  117. Watanabe, K. A., Reichman, U., Hirota, K., Lopez, C. and Fox J. J., Nucleosides. 110. Synthesis and antiherpes virus activity of some 2′-fluoro-2′-deoxy-arabinofuranosylpyrimidine nucleosides.J. Med. Chem., 22, 21–24 (1979).PubMedCrossRefGoogle Scholar
  118. Watanabe, K. A., Su, T.-L., Klein, R. S., Chu, C. K., Matsuda, A., Chun, M. W., Lopez, C. and Fox, J. J., Nucleosides. 123. Synthesis of antiviral nucleosides, 5-substituted 1-(2-deoxy-2-halogeno-β-D-arabinofuranosyl) cytosines and uracils, some structure-activity relationships.J. Med. Chem., 26, 152–156 (1983).PubMedCrossRefGoogle Scholar
  119. Watanabe, K. A., Su, T.-L., Reichman, U., Greenberg, N., Lopez, C. and Fox, J. J., Nucleosides. 129. Synthesis of antiviral nucleosides, 5-alkenyl-1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)uracils.J. Med. Chem., 27, 91–94 (1984).PubMedCrossRefGoogle Scholar
  120. Witcher, J. W., Boudinot, F. D., Baldwin, B. H., Ascenzi, M. A., Tennant, B. C., Du, J. F. and Chu, C. K., Pharmacokinetics of 1-(2-fluoro-5-methyl-β-L-arabinofuranosyl) uracil (L-FMAU) in woodchucks.Antimicrob. Agents Chemother., 41, 2184–2187 (1997).PubMedGoogle Scholar
  121. Wright, J. D., Ma, T.-W., Chu, C. K. and Boundinot, F. D., Pharmacokinetics of 1-(2-deoxy-2-fluoro-β-L-arabinofuranosyl)-5-methyluracil in rats.Pharm. Res., 12, 1350–1353 (1995).PubMedCrossRefGoogle Scholar
  122. Wright, J. D., Ma, T.-W., Chu, C. K. and Boudinot, F. D., Discontinuous oral absorption pharmacokinetic model and bioavailability of 1-(2-fluoro-5-methyl-β-L-arabinofuranosyl)-uracil (L-FMAU) in rats.Biopharm. and Drug Disposition, 17, 948, 1–11 (1996).Google Scholar
  123. Wu, G. Y. and Wu, C. H., Specific inhibition of hepatitis B viral gene expressionin vitro by targeted antisense oligonucleotides.J. Biol. Chem. 267, 12436–12439 (1992).PubMedGoogle Scholar
  124. Wu, J., Sullivan, D. E. and Gerber, M. A., Quantitative polymerase chain reaction for the hepatitis B virus DNA.J. Virol. Methods, 49, 331–341 (1994).PubMedCrossRefGoogle Scholar
  125. Yokota, T., Konno, K., Chonan, E., Mochizuki, S., Kojima, K., Shigeta, S. and De Clerq E., Comparative activities of several nucleoside analogues against duck hepatitis B virusin vitro.Antimicrob. Agents Chemother., 34, 1326–1330 (1990).PubMedGoogle Scholar
  126. Yokota, T., Mochizuki, S., Konno, K., Mori, S., Shigeta, S. and De Clerq, E., Inhibitory effects of selected antiviral compounds on human hepatitis B virus DNA synthesis.Antimicrob. Agents Chemother., 35, 394–397 (1991).PubMedGoogle Scholar
  127. Zoulim, F., Aguesse, S., Borel, C., Trepo, C. and Cheng, Y.-C., 2′-Fluoro-5-methyl-β-L-arabinofuranosyluracil, a novel L-nucleoside analogue, inhibits hepatitis B virus replication in primary hepatocytes andin vivo.Antiviral Res. 30, A24 (1996).Google Scholar
  128. Zoulim, F., Dannaoui, E., Borel, C., Hantz, O., Lin, T.-S., Liu, S.-H., Trepo, C. and Cheng, Y.-C., 2′,3′-Dideoxy-β-L-5-fluorocytidine inhibits duck hepatitis B virus reverse transcription and suppress viral DNA synthesis in hepatocytes, bothin vitro andin vivo.Antimicrob. Agents Chemother., 40, 448–453 (1996).PubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 1998

Authors and Affiliations

  • Joon H. Hong
    • 1
  • Yongseok Choi
    • 1
  • Byoung K. Chun
    • 1
  • Kyeong Lee
    • 1
  • Chung K. Chu
    • 1
  1. 1.Center for Drug Discovery, Pharmaceutical & Biomedical Sciences, College of PharmacyThe University of GeorgiaAthensUSA

Personalised recommendations