Advertisement

Journal of Mountain Science

, Volume 2, Issue 3, pp 211–217 | Cite as

Geomechanics of hazardous landslides

  • Poisel RainerEmail author
  • Bednarik Martin
  • Holzer Rudolf
  • Liščák Pavel
Article

Abstract

A catalogue of possible landslide initial failure mechanisms, taking into account the geological setting and the geometry of the slope, the joint structure, the habitus of the rock blocks, as well as the mechanical behaviour of the rocks and of the rock mass (deformation and strength parameters), is presented. Its aim is to give geologists as well as engineers the opportunity to compare phenomena in the field and phenomena belonging to particular mechanisms and to find the mechanism occurring. The presented catalogue of initial landslide mechanisms only comprises the mechanisms having a clearly defined mechanical model that can be divided into empirical relations and into mechanical models, as well as an overview of run out models, which can be divided into empirical relations and into mechanical models.

Keywords

Geomechanics landslide model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, A. W. 1955. The Use of the Slip Circle in the Stability Analysis of Earth Slopes.Geotechnique 5: 7–17.Google Scholar
  2. Cavers, D.S. 1981. Simple Methods to Analyze Buckling of Rock Slopes.Rock Mechanics 14: 87–104.CrossRefGoogle Scholar
  3. Goodman, R.E., Bray, J.W. 1976. Toppling of Rock Slopes. In:Proc. Conf. Rock Engineering for Foundations and Slopes. Vol. 2, Pp. 201–234.Google Scholar
  4. Goodman, R.E., Shi, G. H. 1985.Block Theory and its Application to Rock Engineering. New Jersey: Prentice Hall.Google Scholar
  5. Gussmann, P. 1988. KEM (Kinematical Element Method) in Geomechanics. In:Proc. 6th Congr. Numerical Methods in Geomechanics. Innsbruck, 1988, Pp. 823–828.Google Scholar
  6. Hittinger, M., Goodman, R.E. 1978.JTROCK, a Computer Program for Stress Analysis of Two Dimensional, Discontinuous Rock Masses. Report No. UCB/GT/78-04, University of California, Berkeley.Google Scholar
  7. Hungr, O. 1995. A Model for the Runout Analysis of Rapid Flow Slides, Debris Flows, and Avalanches.Canadian Geotechnical Journal 32: 610–623.CrossRefGoogle Scholar
  8. Hungr, O., Evans, S.G. 2004. The Occurrence and Classification of Massive Rock Slope Failure.Felsbau 22: 16–23.Google Scholar
  9. Kieffer, D.S. 1998. Rock slumping: A Compound Failure Mode of Jointed Hard Rock Slopes. PhD Dissertation, Dept. of Civ. and Envir. Engrg., University of California, Berkeley.Google Scholar
  10. Kovari, K. 1990. Methods of Monitoring Landslides. In:Proc. 5th Int. Symp. On Landslides. Lausanne 1988. Balkema. Pp. 1421–1433.Google Scholar
  11. Poisel, R., Eppensteiner, W. 1988. A Contribution to the Systematies of Rock Mass Movements. In:Proc. 5th. Int. Symp Landslides, Lausanne, 1988, Vol.2: 1353–1357.Google Scholar
  12. Poisel, R., Preh, A. 2004. Rock Slope Initial Failure Mechanisms and Their Mechanical Models.Felsbau 22: 40–45.Google Scholar
  13. Poisel, R., Roth, W. 2004. Run out Models of Rock Slope Failures.Felsbau 22: 46–50.Google Scholar
  14. Preh, A. 2004. Modellierung des Verhaltens von Massenbewegungen bei großen Verschiebungen mit Hilfe des Particle Flow Codes. PhD Dissertation, Inst. for Engrg. Geology, Vienna University of Technology.Google Scholar
  15. Riedmüller, G. 2003. Classification Schemes of Unstable Slopes an Overview.Felsbau 21(2): 13–18.Google Scholar
  16. Roth, W. 2003. Dreidimensionale Numerische Simulation von Felsmassenstürzen Mittels der Methode der Distinkten Elemente (PFC). PhD Dissertation, Inst. for Engrg. Geology, Vienna University of Technology.Google Scholar
  17. Roth, W., Preh, A., Poisel, R., Hofmann, R. & Sauermoser S. 2002. Numerische Modellierung von Felsmassenstürzen am Beispiel der Schutzdämme Eiblschroften.Felsbau 20(5): 179–187.Google Scholar
  18. Voight, B. & Pariseau, W. G. 1978. Rockslides and Avalanches: an Introduction. In: Voight, B. (ed.),Rockslides and Avalanches, Volume 1, Elsevier, Amsterdam.Google Scholar
  19. Will, J. & Konietzky, H. 1998. Neue Techniken der Numerik zur Berechnung von Felsböschungen.Felsbau 16: 155–167.Google Scholar
  20. Wittke, W. 1990.Rock Mechanics. Springer, Berlin.Google Scholar
  21. Zienkiewicz, O.C., Humpheson, C., Lewis, R.W. 1975. Associated and Non-associated Visco-plasticity and Plasticity in Soil Mechanics.Geotechnique 25: 671–689.CrossRefGoogle Scholar

Copyright information

© Institute of Moutain Hazards and Environment, Chinese Academy of Sciences and Science Press 2005

Authors and Affiliations

  • Poisel Rainer
    • 1
    Email author
  • Bednarik Martin
    • 2
  • Holzer Rudolf
    • 2
  • Liščák Pavel
    • 2
  1. 1.Institute for Engineering GeologyVienna University of TechnologyViennaAustria
  2. 2.Dept. of Engineering Geology, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia

Personalised recommendations