Journal of Mountain Science

, Volume 2, Issue 3, pp 202–210 | Cite as

Natural hazard prevention and the mountain land risk reduction in the Western Carpathians

  • Peter MaasEmail author
  • Rudolf Ondrášik
  • Libor Jansky


The Western Carpathians are located out of world main natural hazardous zones. Human casualties are related more to snow avalanches in connection with mountain hiking, some individuals yearly by flooding and rarely by forest fires. Economic lost about 0.1 to 0.2 %, exceptionally up to 0.8 % of the gross domestic product (GDP) proportionally to the Carpathian regions of particular countries. Natural disasters are linked, except of the above mentioned events, to infrequent small and medium scale earthquakes, landslides, and erosion. Records of the most harmful natural events are found in archives since the 16th century. Their systematic study and factor analysis started from the end of the 19th century, and protective measures and organization of impact mitigation developed during the 20th century to minimize the risk.


Natural hazards Western Carpathians Slovakia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cebulak E., Faško P., Lapin M., Štastný P. 2000. Extreme Precipitation Events in the Western Carpathians. In:Images of Weather and Climate. Geographical Works — Volume 108. Institute of Geography, Jagelonian University, Cracow, Poland. Pp. 117–124.Google Scholar
  2. Dapples F., Oswald D., Raetzo H., 2002. Holocene Landslide Activity in The Western Swiss Alps — A Consequence of Vegetation Changes and Climate Oscillations. In: Rybář al. (eds.),Proc. 1st European Conference on Landslides. Prague, Czech Republic. Pp. 349–354.Google Scholar
  3. Faško P., Lapin M., Štastný P., Vivoda J. 2000. Daily Precipitation Extreines in Slovakia Based on Data from 607 Stations and 50-year Period. In:Proceedings VIII. Poster International Poster Day “Transport of Water, Chemicals and Energy in the Soil-Plant-Atmosphere System”. ÚH SAV a GFÚ SAV, Bratislava. CD-ROM, ISBN 80-968480-0-3. Pp. 1–7.Google Scholar
  4. Haigh, J. M., L. Jansky & J. Hellin. 2004. Headwater Deforestation: A Challenge for Environmental Management.Global Environmental Change, Human and Policy Dimension,14(1): 51–62.CrossRefGoogle Scholar
  5. Jansky, L. 1992. Sediment accumulation in small water reservoirs utilized for irrigation. In: T. Younos, P. Diplas & S. Mostaghimi (eds.), In:Int. Symposium “Land reclamation — advances in research and technology”. Nashville, ASAE. Pp. 76–82.Google Scholar
  6. Kopecký M. 2002. Influence of climatic and hydrogeologic conditions on the origin of landslides in Slovakia. In: Rybář al. (eds.),Proc. 1st European Conference on Landslides. Prague, Czech Republic. Pp. 367–372.Google Scholar
  7. Kettner R., Záruba Q. 1922.Geologic Studies in the Carpathian Flysch on the Moravia-Slovak Border. SGU, Bratislava. (In Slovak)Google Scholar
  8. Kullman E., Jr. and Kullman E.Sen. 1999. Ecological Aspects of Groundwater Development in the Mountain Regions of Slovakia.Slovac Geological Magazine 5: 1–2, 15–22.Google Scholar
  9. Malgot J., Mahr T. 1979. Engineering Geological Mapping of the West Carpathian Lanslides Areas. Bull. IAEG, 19, Krefeld, Pp. 116–121.Google Scholar
  10. Marčeková K., Lapin M., Zavodsky D., Zuzula I, Minarik B., Zavadsky I., Mojik I. 1997.Country Study Slovakia (Final Report). Bratislava, Slovakia, Pp. 107.Google Scholar
  11. Margielwski, W. 2002. Late Glacial and Holocene Climatic Changes Registered in Landslide Forms and Their Deposits in the Polish Flysch Carpathians. In: Rybář J,et al. (eds.),Proc. 1st European Conference on Landslides. Prague, Czech Republic. Pp. 399–404.Google Scholar
  12. Matula M. 1969.Regional Engineering Geology of Czechoslovak Carpathians. Bratislava, Slovakia: SAV. Pp. 225. (In Slovak)Google Scholar
  13. Nemčok A. 1982.Landslides in the Slovak Carpathians. Bratislava, Slovakia: VEDA SAV. Pp. 320. (In Slovak, with an extent English resume)Google Scholar
  14. Ondrášik R. 2002. Landslides in the West Carpathians. In: Rybář al. (eds.),Proc. 1st European Conference on Landslides. Prague, Czech Republic. Pp. 45–57.Google Scholar
  15. Pauditš P., Bednarik M., 2002. Using GIS in Evaluation of Landslide Susceptibility in HandlovskÁ Kotlina Basin. In: Rybář al. (eds.),Proc. 1st European Conference on Landslides. Prague, Czech Republic. Pp. 437–441.Google Scholar
  16. Rybář J., Stemberk J., Suchý J. 1998. Cut-off A Railway Line by Earth Flows in the Czech Republic during July 1997.Proc. of 8th Int. IAEG Congress. Vol.III, A.A. Balkema, Vancouver, Canada, Pp. 2083–2089.Google Scholar
  17. Rybář J., Stemberk J. 2000. Avalanche-like Occurrences of Slope Deformations in the Czech Republic and Coping with Their Consequences.Landslide news 13: 28–33.Google Scholar
  18. Slovak Environmental Agency. 2000. Environmental Risk Factors. Google Scholar
  19. Sokol A. 1998. Supercella (multicella) in the Eastern Slovakia. In:Works and Studies 60 to Floods in 1998. Bratislava, Slovakia. Pp. 25–36.Google Scholar
  20. Stehlo P., Kováč K., 1999. Country Report on the Present Environmental Situation in Agriculture. In:Central and Eastern European Sustainable Agriculture Network. Gödöllő, Hungary, Pp. 1–24.Google Scholar
  21. Šúri M., Cebecauer T., Hofierka J., Fulajtár E. 2002. Soil Erosion Assessment of Slovakia at A Regional Scale Using GIS.Ecology (Bratislava)21(4): 404–422.Google Scholar
  22. UNESCO. 2005. Natural Dissater Reduction. Earth Sciences Programme. Google Scholar
  23. Vojtek M., 2002. Meteorological Conditions and Avalanche Formation in the High Tatra Mountains.Meteorological Journal 5 (4): 9–14.Google Scholar
  24. Vojtek M., 2005. Statistical Results from Historical Avalanche Records (High Tatra Mountains, Slovakia).Contributions to Geophysics & Geodesy, Vol.35 No.2 or 3. (In press)Google Scholar
  25. Wagner P., Malgot J., Modlitba I. and Andor L. 2000. History and Perspective of Landslides Studies in Slovakia.Mineralia Slovaca 32: 335–339.Google Scholar
  26. Wagner P., Scherer S., Jadroň D., Mokrá M., Vybíral V. 2002: Analysis of landslide monitoring results. In: Rybář al. (eds.),Proc. 1st European Conference on Landslides. Prague, Czech Republic. Pp. 471–476.Google Scholar
  27. Záruba Q. 1922. Studies about Landslide Areas in Vsatsko and Valaschsko Regions.Casopis Moravskeho Musea zemskeho v Brne 20: 170–180. (In Czech)Google Scholar
  28. Záruba Q. 1954. Landslides in the Neogene Sediments at the Northern Margin of the Turcianska Kotlina Basin.Vestnik Ustr. Ust. Geol 2: 77–81. (In Czech)Google Scholar
  29. Záruba Q., Mencl V. 1958. Analysis of a Landslide near Klacany on the River Vah.Rozpravy CSAV 68: 1–34. (In Czech with English summary)Google Scholar
  30. Záruba Q., Mencl V. 1969.Landslides and Their Control. Amsterdam, Elsevier and Prague, Academia, Pp. 5–205.Google Scholar
  31. Zátopek A. 1979. On Geodynamical Aspects of Geophysical Synthesis in Central Europe.Geodynamic Investigations in Czechoslovakia. Bratislava, Slovakia: VEDA SAV. Pp. 91–104. (In Slovak).Google Scholar

Copyright information

© Institute of Moutain Hazards and Environment, Chinese Academy of Sciences and Science Press 2005

Authors and Affiliations

  1. 1.Department of Engineering Geology, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  2. 2.Environment and Sustainable Development ProgrammeUnited Nations UniversityTokyoJapan

Personalised recommendations