Journal of Mountain Science

, 2:181 | Cite as

Surface macrofabric of boulder dominated desert mountain slopes, California, USA

  • Donald A. FriendEmail author


Rhyolite domes formed over a million year continuum in eastern California are used to study boulder dominated slopes. Slopes in this study are steep (∼25° to ∼35°) and are made of coarse boulder sized blocks. These slopes include well varnished vertically oriented colluvial deposits that have been likened to relict periglacial stone stripes, or as indicated in this study, are the result of ongoing desert slope processes. The deposits are common throughout the arid southwestern US, but their morphometric character, fabric, and rates of formation have not been assessed systematically. Results indicate that boulder deposits examined here are remnant from the original surface formed during volcanic eruption and that these boulder slope deposits evolve slowly. Grain size, grain shape and grain angularity do not change significantly from genesis to ∼0.6 Ma; trends in the data change markedly after that time. Mean eigenvectors indicate a fabric oriented downhill, parallel to the slope, consistent with the visual impression that long thin to plate-like rocks orient themselves similarly; however, fabric is actually randomly dispersed, similar to that at slope genesis, as indicated by the eigenvalue analysis resultants ofC andK. Interestingly, grains remain or become more angular over the million-year time scale of the study as they decrease in size, indicating active in situ weathering processes on individual grains; this result is counter to the common assumption that as grains weather they become more rounded over time.


Boulder-fields desert-slopes macrofabric 


  1. Andrews, J. T. 1971a. Methods in the Analysis of Till Fabrics. In: Goldthwait, R. P. (ed.),Till a Symposium. Ohio State University Press. Pp. 321–327.Google Scholar
  2. Andrews, J. T. 1971b. Techniques of Till Fabric Analysis.British Geomorphological Research Group, Technical Bulletin, #6.Google Scholar
  3. Andrews, J. T. &IngleSmith, D. 1966. The Variability of Till Fabric.British Geomorphological Group, Occasional Paper 3: 33–37.Google Scholar
  4. Andrews, J. T. &Shimizu, K. 1966. Three-dimensional Vector Technique for Analyzing Till Fabrics: Discussion and FORTRAN Program.Geographical Bulletin 8(2): 151–165.Google Scholar
  5. Blackwelder, E. 1934. Talus Slopes in the Basin Range Province. In:Geological Society of America Annual Meeting, Vol. Proceedings, Pp. 317.Google Scholar
  6. Bloom, A. L. 1978.Geomorphology. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, Pp. 510.Google Scholar
  7. Bryan, K. 1922. Erosion and Sedimentation in the Papago Country, Arizona.United States Geological Survey Bulletin,730-B: 19–90.Google Scholar
  8. Caine, T. N. 1963. The Origin of Sorted Stripes in the Lake District, Northern England.Geografiska Annaler 45(2–3): 172–179.CrossRefGoogle Scholar
  9. Caine, T. N. 1968a.The Blockfields of Northern Tasmania. Australian National University, Canberra, Pp. 127.Google Scholar
  10. Caine, T. N. 1972. Air Photo Analysis of Blockfield Fabrics in Talus Valley, Tasmania.Journal of Sedimentary Petrology,42(1): 33–48.Google Scholar
  11. Caine, T. N. 1983.The Mountains of Northeastern Tasmania. A. A. Balkema, Rotterdam. Pp. 200.Google Scholar
  12. Caine, T. N. &Jennings, J. N. 1968. Some Blockstreams of the Toolong Range Kosciusko State Park, New South Wales.Journal and Proceedings, Royal Society of New South Wales 101: 93–103.Google Scholar
  13. Cheeney, R. F. 1983.Statistical Methods in Geology for Field and Lab Decisions. George Allen & Unwin, London, Pp. 169.Google Scholar
  14. Cluer, J. K. 1988. Leveed Boulder Flows on Volcanic Slopes of the Sonoran Desert, Arizona.Journal of Arid Environments 15: 43–52.Google Scholar
  15. Compton, R. R. 1962.Manual of Field Geology. John Wiley & Sons, Inc., New York, Pp. 378.Google Scholar
  16. Davis, J. C. 1986.Statistics and Data Analysis in Geology. John Wiley & Sons, New York, Pp. 686.Google Scholar
  17. Denny, C. S. &Drewes, H. 1965. Geology of the Ash Meadows Quadrangle Nevada-California.United States Geological Survey Bulletin 1181-L.Google Scholar
  18. Dorn, R. I., Jull, A. J. T., Donahue, D. J., Linick, T. W. &Toolin, L. J. 1989. Accelerator Mass Spectrometry Radiocarbon Dating of Rock Varnish.Geological Society of America Bulletin 101: 1363–1372.CrossRefGoogle Scholar
  19. Dorn, R. I. &Krinslev, D. 1994. New Perspectives on Colluvial Boulder Deposits in the Southwestern Great Basin, USA.Physical Geography 15(1): 62–79.Google Scholar
  20. Duffield, W. A. & Bacon, C. R. 1981. Geologic map of the Coso Volcanic Field and adjacent areas, Inyo County, California.United States Geological Survey Miscellaneous Investigations Series, Map I-1200.Google Scholar
  21. Duffield, W. A., Bacon, C. R. &Dalrymple, G. B. 1980. Late Cenozoic Volcanism, Geochronology and Structure of the Coso Geothermal Area, Inyo County.Journal of Geophysical Research 85(B5): 2381–2404.CrossRefGoogle Scholar
  22. Fairbridge, R. W. 1968. The Encyclopedia of Geomorphology. In:Encyclopedia of Earth Sciences Series, Vol. III, Pp. 1295. Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania.Google Scholar
  23. Fisher, R. A. 1953. Dispersion on a Sphere.Proceedings of the Royal Society of London, Series A 217: 295–306.CrossRefGoogle Scholar
  24. Folk, R. L. 1974.Petrology of Sedimentary Rocks. Hemphill Publishing Co., Austin, Texas. Pp. 182.Google Scholar
  25. Friend, D. A. 1997. Evolution of Desert Colluvial Boulder Fields, Eastern California. Ph.D. Dissertation, Arizona State University.Google Scholar
  26. Friend, D. A. 2000. Revisiting William Morris Davis and Walther Penck to Propose a General Model of Slope ‘Evolution’ in Deserts.The Professional Geographer 52(2): 164–178.CrossRefGoogle Scholar
  27. Friend, D. A.,Phillips, F. M., Campbell, S. W., Liu, T. &Sharma, P. 2000. Evolution of Desert Colluvial Boulder Slopes.Geomorphology 36(1–2): 19–45.CrossRefGoogle Scholar
  28. Harrington, C. D. & Whitney, J. D. 1991. Quaternary Erosion Rates on Hillslopes in the Yucca Mountain Region, Nevada. In:Geological Society of America Annual Meeting, Vol. 23(5), Pp. A118.Abstracts with programs.Google Scholar
  29. Hicock, S. R., Goff, J. R., Lian, O. B. &Little, E. C. 1996. On the Interpretation of Subglacial Till Fabric.Journal of Sedimentary Research 66(5): 928–934.Google Scholar
  30. Hu, Q.,Smith, P. E., Evensen, N. M. &York, D. 1994. Lasing in the Holocene: Extending the 40Ar-39Ar Laser Probe Method into the 14C Range.Earth and Planetary Science Letters 123: 331–336.CrossRefGoogle Scholar
  31. Kamb, W. B. 1959. Ice Petrofabric Observations from Blue Glacier. Washington, in Relation to Theory and Experiment.Journal of Geophysical Research 64(11): 1891–1909.CrossRefGoogle Scholar
  32. Lovejoy, E. M. P. 1972. Wisconsin Boulder Flow and its Geomorphic Implications, Franklin Mountains, El Paso County, Texas.Geological Society of America Bulletin 83: 3501–3508.CrossRefGoogle Scholar
  33. Macdonald, G. A. 1972.Volcanoes. Prentice-Hall, Englewood Cliffs, New Jersey, Pp. 510.Google Scholar
  34. Marcus, W. A.,Ladd, S. C., Stoughton, J. A. &Stock, J. W. 1995. Pebble Counts and the Role of User-dependent Bias in Documenting Sediment Size Distributions.Water Resources Research 31(10): 2625–2631.CrossRefGoogle Scholar
  35. Mardia, K. V. 1972Statistics of Directional Data. Academic Press, New York. Pp. 357.Google Scholar
  36. Mark, D. M. 1973. Analysis of Axial Orientation Data, Including Till Fabrics.Geological Society of America Bulletin 84: 1369–1374.CrossRefGoogle Scholar
  37. Marshak, S. &Mitra, G. 1988.Basic Methods of Structural Geology. Prentice Hall, Englewood Cliffs, New Jersey. Pp. 446.Google Scholar
  38. Melton, M. A. 1965. Debris-covered Hillslopes of the Southern Arizona Desert-Consideration of their Stability and Sediment Contribution.Journal of Geology 73: 715–729CrossRefGoogle Scholar
  39. Millar, S. W. S. 1998. Possible Fabric Data Biasing Resulting from Sampling Methodology. In:94th Annual Meeting of the Association of American Geographers Abstracts, Pp. 552, Boston, MA.Google Scholar
  40. Millar, S. W. S. &Nelson, F. E. 2001. Sampling-surface Orientation and Clast Macrofabric in Periglacial Colluvium.Earth Surface Processes and Landforms 26: 523–529CrossRefGoogle Scholar
  41. Miller, C. D. 1985. Chronology of Holocene Eruptions at the Inyo Volcanic Chain, California — Implications for possible eruptions in Long Valley Caldera.Geology 13: 14–17CrossRefGoogle Scholar
  42. Nials, F. L. & Davis, J. O. 1990. Linear, Sorted Stone Features (stone gullies) in the Great Basin are of Fluvial, not Permafrost, Origin. In:Geological Society of America Annual Meeting, Vol. 22, Pp. A109.Abstracts with programs.Google Scholar
  43. Péwé, T. L. 1983. The Periglacial Environment in North America during Wisconsin time. In: Wright, H. E., Jr. (eds.),Late Quaternary Environments of the United States, Vol. 1: The Pleistocene. University of Minnesota Press, Minneapolis.Editor. Pp. 157–189.Google Scholar
  44. Powers, M. C. 1953. A New Roundness Scale for Sedimentary Particles.Journal of sedimentary petrology 23(2): 117–119.Google Scholar
  45. Prokopovich, N. P. 1987. Rock Stripes of the Sierra Nevada Foothills.California Geology 27–30.Google Scholar
  46. Shafer, D. S. 1986. Paleoclimatic Significance of Late Wisconsin Cryogenic Deposits in the Central Great Basin, Eastern Nevada. In:American Quaternary Association ninth biennial meeting. University of Illinois, Champaign-Urbana.Program and abstracts. Pp. 163.Google Scholar
  47. Sieh, K. &Bursik, M. 1986. Most Recent Eruption of the Mono Craters, Eastern Central California.Journal of Geophysical Research 91(B12): 12539–12571.CrossRefGoogle Scholar
  48. Wells, S. G.,Ford, R. L., Grimm, J. P., Martinez, G. F., Pickle, J. D., Sares, S. W. &Weadock, G. L. 1982. Development of Debris Flows on Debris-mantled Hillslopes: an Example of Feedback Mechanisms in Desert Hillslope Processes. In: Leopold, L. B. (ed.),American Geomorphological Field Group. Pp. 141, Pinedale, Wyoming.Field Trip Guidebook.Google Scholar
  49. Whitney, J. S. & Harrington, C. D. 1988. Middle Pleistocene Colluvial Boulder Flows on Yucca Mountain in Southern Nevada. In:Geological Society of America Annual Meeting, Vol. 20(7), Pp. A348.Abstracts with programs.Google Scholar
  50. Whitney, J. W. &Harrington, C. D. 1993. Relict Colluvial Boulder Deposits as Paleoclimatic Indicators in the Yucca Mountain Region, Southern Nevada.Geological Society of America Bulletin 105: 1008–1018.CrossRefGoogle Scholar
  51. Woodcock, N. H. 1977. Specification of Fabric Shapes Using and Eigenvalue Method.Geological Society of America Bulletin 88: 1231–1236.CrossRefGoogle Scholar
  52. Woodcock, N. H. &Naylor, M. A. 1983. Randomness Testing in Three-dimensional Orientation Data.Journal of Structural Geology 5(5): 539–548.CrossRefGoogle Scholar

Copyright information

© Institute of Moutain Hazards and Environment, Chinese Academy of Sciences and Science Press 2005

Authors and Affiliations

  1. 1.Department of GeographyMinnesota State UniversityMankatoUSA

Personalised recommendations