Journal of Nuclear Cardiology

, Volume 13, Issue 2, pp 244–250 | Cite as

Acute impairment of regional myocardial glucose uptake in the apical ballooning (takotsubo) syndrome

  • Kevin A. Bybee
  • Joseph Murphy
  • Abhiram Prasad
  • R. Scott Wright
  • Amir Lerman
  • Charanjit S. Rihal
  • Panithaya Chareonthaitawee



Apical ballooning syndrome (ABS) is a poorly understood clinical entity characterized by acute, transient systolic dysfunction of the left ventricular (LV) apex in the absence of epicardial coronary artery disease and commonly associated with acute emotional stress. We report abnormal regional myocardial perfusion and glucose uptake in 4 consecutive ABS patients studied using positron emission tomography with13N-ammonia and18F-fluoro-deoxyglucose within 72 hours of presentation with ABS.


All patients were postmenopausal females, 3 of whom had a major recent life stress event Coronary angiography revealed no or minimal obstructive epicardial coronary artery disease. All patients exhibited reduced glucose uptake in the mid-LV and apical myocardial segments, which was out of proportion to perfusion abnormalities in half of the cases.


In all 4 patients, affected regions subsequently recovered regional LV systolic function within 6 weeks.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bybee KA, Kara T, Prasad A, Lerman A, Barsness GW, Wright RS, et al. Systematic review: transient left ventricular apical ballooning: a syndrome that mimics ST-segment elevation myocardial infarction. Ann Intern Med 2004;141:858–65.PubMedGoogle Scholar
  2. 2.
    Tsuchihashi K, Ueshima K, Uchida T, Oh-mura N, Kimura K, Owa M, et al. Transient left ventricular apical ballooning without coronary artery stenosis: a novel heart syndrome mimicking acute myocardial infarction. J Am Coll Cardiol 2001;38:11–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Bybee KA, Prasad A, Barsness GW, Lerman A, Jaffe AS, Murphy JG, et al. Clinical characteristics and thrombolysis in myocardial infarction frame counts in women with transient left ventricular apical ballooning syndrome. Am J Cardiol 2004;94:343–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Kurisu S, Sato H, Kawagoe T, Ishihara M, Shimatani Y, Nishioka K, et al. Tako-tsubo-like left ventricular dysfunction with ST-segment elevation: a novel cardiac syndrome mimicking acute myocardial infarction. Am Heart J 2002;143:448–55.PubMedCrossRefGoogle Scholar
  5. 5.
    Abe Y, Kondo M, Matsuoka R, Araki M, Dohyama K, Tanio H. Assessment of clinical features in transient left ventricular apical ballooning. J Am Coll Cardiol 2003;41:737–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Seth PS, Aurigemma GP, Krasnow JM, Tighe DA, Untereker WJ, Meyer TE. A syndrome of transient left ventricular apical wall motion abnormality in the absence of coronary disease: a perspective from the United States. Cardiology 2003;100:61–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Sharkey SW, Lesser JR, Zenovich AG, Maron MS, Lindberg J, Longe TF, et al. Acute and reversible cardiomyopathy provoked by stress in women from the United States. Circulation 2005;0:472–99.CrossRefGoogle Scholar
  8. 8.
    Wittstein IS, Thiemann DR, Lima JA, Baughman KL, Schulman SP, Gerstenblith G, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 2005;352:539–488.PubMedCrossRefGoogle Scholar
  9. 9.
    Dote K, Sato H, Tateishi H, Uchida T, Ishihara M. Myocardial stunning due to simultaneous multivessel coronary spasms: a review of 5 cases. J Cardiol 1991;21:203–14.PubMedGoogle Scholar
  10. 10.
    Ibanez B, Navarro F, Cordoba M, M-Alberca P, Farre J. Takotsubo transient left ventricular apical ballooning: is intravascular ultrasound the key to resolve the enigma? Heart 2005;91:102–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Kurisu S, Inoue I, Kawagoe T, Ishihara M, Shimatani Y, Nishioka K, et al. Myocardial perfusion and fatty acid metabolism in patients with tako-tsubo-like left ventricular dysfunction. J Am Coll Car- diol 2003;41:743–8.CrossRefGoogle Scholar
  12. 12.
    Tamaki N, Yonekura Y, Senda M, Kureshi SA, Saji H, Kodama S, et al. Myocardial positron computed tomography with 13N-ammonia at rest and during exercise. Eur J Nucl Med 1985;11:246–51.PubMedCrossRefGoogle Scholar
  13. 13.
    Iozzo P, Chareonthaitawee P, Dutka D, Betteridge DJ, Ferrannini E, Camici PG. Independent association of type 2 diabetes and coronary artery disease with myocardial insulin resistance. Diabe- tes 2002;51:3020–4.CrossRefGoogle Scholar
  14. 14.
    Obunai K, Misra D, Van Tosh A, Bergmann SR. Metabolic evidence of myocardial stunning in takotsubo cardiomyopathy: a positron emission tomography study. J Nucl Cardiol 2005;6:742–4.CrossRefGoogle Scholar
  15. 15.
    Schwaiger M, Pirich C. Reverse flow-metabolism mismatch: what does it mean? J Nucl Med 1999;40:1499–502.PubMedGoogle Scholar
  16. 16.
    Perrone-Filardi P, Bacharach SL, Dilsizian V, Marin-Neto JA, Maurea S, Arrighi JA, et al. Clinical significance of reduced regional myocardial glucose uptake in regions with normal blood flow in patients with chronic coronary artery disease. J Am Coll Cardiol 1994;23:608–16.PubMedGoogle Scholar
  17. 17.
    Yamagishi H, Akioka K, Hirata K, Sakanoue Y, Takeuchi K, Yoshikawa J, et al. A reverse flow-metabolism mismatch pattern on PET is related to multivessel disease in patients with acute myocardial infarction. J Nucl Med 1999;40:1492–8.PubMedGoogle Scholar
  18. 18.
    Mesotten L, Maes A, Herregods MC, Desmet W, Nuyts J, Van de Werf F, et al. PET “ reversed mismatch pattern” early after acute myocardial infarction: follow-up of flow, metabolism and function. Eur J Nucl Med 2001;28:466–71.PubMedCrossRefGoogle Scholar
  19. 19.
    Mesotten L, Dispersyn GD, Maes A, Zietkiewicz M, Nuyts J, Bormans G, et al. PET reversed mismatch in an experimental model of subacute myocardial infarction. Eur J Nucl Med 2001; 28:457–65.PubMedCrossRefGoogle Scholar
  20. 20.
    Myears DW, Sobel BE, Bergmann SR. Substrate use in ischemic and reperfused canine myocardium: quantitative considerations. Am J Physiol 1987;253:H107–14.PubMedGoogle Scholar
  21. 21.
    Schwaiger M, Neese RA, Araujo L, Wyns W, Wisneski JA, Sochor H, et al. Sustained nonoxidative glucose utilization and depletion of glycogen in reperfused canine myocardium. J Am Coll Cardiol 1989;13:745–54.PubMedCrossRefGoogle Scholar
  22. 22.
    Camici P, Araujo LI, Spinks T, Lammertsma AA, Kaski JC, Shea MJ, et al. Increased uptake of 18F-fluorodeoxyglucose in postisch- emic myocardium of patients with exercise-induced angina. Circulation 1986;74:81–8.PubMedGoogle Scholar
  23. 23.
    Ito K, Sugihara H, Kawasaki T, Yuba T, Doue T, Tanabe T, et al. Assessment of ampulla (Takotsubo) cardiomyopathy with coronary angiography, two-dimensional echocardiography and 99mTc-tetrofosmin myocardial single photon emission computed tomog- raphy. Ann Nucl Med 2001;15:351–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Ito K, Sugihara H, Katoh S, Azuma A, Nakagawa M. Assessment of Takotsubo (ampulla) cardiomyopathy using 99mTc-tetrofosmin myocardial SPECT—comparison with acute coronary syndrome. Ann Nucl Med 2003;17:1 15–22.Google Scholar
  25. 25.
    Ueyama T, Kasamatsu K, Hano T, Yamamoto K, Tsumo Y, Nishio I. Emotional stress induces transient left ventricular hypocontraction in the rat via activation of cardiac adrenoceptors: a possible animal model of ‘tako-tsubo’ cardiomyopathy. Circ J 2002;66:712–3.PubMedCrossRefGoogle Scholar
  26. 26.
    Akashi YJ, Nakazawa K, Sakakibara M, Miyake F, Musha H, Sasaka K. 123I-MIBG myocardial scintigraphy in patients with “ takotsubo” cardiomyopathy. J Nucl Med 2004;45:l 121–7.Google Scholar
  27. 27.
    Owa M, Aizawa K, Urasawa N, Ichinose H, Yamamoto K, Karasawa K, et al. Emotional stress-induced ‘ampulla cardiomyopathy’: discrepancy between the metabolic and sympathetic innervation imaging performed during the recovery course. Jpn Circ J 2001;65:349–52.PubMedCrossRefGoogle Scholar
  28. 28.
    Lacy CR, Contrada RJ, Robbins ML, Tannenbaum AK, Moreyra AE, Chelton S, et al. Coronary vasoconstriction induced by mental stress (simulated public speaking). Am J Cardiol 1995;75:503–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Singal PK, Kapur N, Dhillon KS, Beamish RE, Dhalla NS. Role of free radicals in catecholamine-induced cardiomyopathy. Can J Physiol Pharmacol 1982;60:1390–7.PubMedGoogle Scholar
  30. 30.
    Egert S, Nguyen N, Brosius FC III, Schwaiger M. Effects of wortmannin on insulin- and ischemia-induced stimulation of GLUT4 translocation and FDG uptake in perfused rat hearts. Cardiovasc Res 1997;35:283–93.PubMedCrossRefGoogle Scholar
  31. 31.
    Knuuti J, Schelbert HR, Bax JJ. The need for standardisation of cardiac FDG PET imaging in the evaluation of myocardial viability in patients with chronic ischaemic left ventricular dysfunction. Eur J Nucl Med 2002;29:1257–66.CrossRefGoogle Scholar
  32. 32.
    Ono S, Nohara R, Kambara H, Okuda K, Kawai C. Regional myocardial perfusion and glucose metabolism in experimental left bundle branch block. Circulation 1992;85:1125–31.PubMedGoogle Scholar
  33. 33.
    Zanco P, Desideri A, Mobilia G, Cargnel S, Milan E, Celegon L, et al. Effects of left bundle branch block on myocardial FDG PET in patients without significant coronary artery stenoses. J Nucl Med 2000;41:973–7.PubMedGoogle Scholar
  34. 34.
    Niklasson M, Holmang A, Lonnroth P. Induction of rat muscle insulin resistance by epinephrine is accompanied by increased interstitial glucose and lactate concentrations. Diabetologia 1998; 41:1467–73.PubMedCrossRefGoogle Scholar
  35. 35.
    Deibert DC, DeFronzo RA. Epinephrine-induced insulin resistance in man. J Clin Invest 1980;65:717–21.PubMedCrossRefGoogle Scholar
  36. 36.
    Mori H, Ishikawa S, Kojima S, Hayashi J, Watanabe Y, Hoffman JI, et al. Increased responsiveness of left ventricular apical myocardium to adrenergic stimuli. Cardiovasc Res 1993; 27:192–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Hemandez-Pampaloni M, Keng FY, Kudo T, Sayre JS, Schelbert HR. Abnormal longitudinal, base-to-apex myocardial perfusion gradient by quantitative blood flow measurements in patients with coronary risk factors. Circulation 2001;104:527–32.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2006

Authors and Affiliations

  • Kevin A. Bybee
    • 1
  • Joseph Murphy
    • 1
  • Abhiram Prasad
    • 1
  • R. Scott Wright
    • 1
  • Amir Lerman
    • 1
  • Charanjit S. Rihal
    • 1
  • Panithaya Chareonthaitawee
    • 1
  1. 1.Division of Cardiovascular DiseasesMayo Clinic College of MedicineRochester

Personalised recommendations