Codimension-two singularities of reversible vector fields in 3D

  • João Carlos da Rocha Medrado
  • Marco Antonio Teixeira


This paper is concerned with the dynamics near an equilibrium point of reversible systems. For a large class of reversible vector fields on the three dimensional space we present all the topological types and their respective normal forms of the codimension-two symmetric singularities. Such classification comes from useful new results, also proved here, on dynamical systems defined on manifolds with boundary.

Key words

Reversibility Singularity Bifurcation Normal Forms 


  1. 1.
    V. I. Arnold,Indices of Singular Points of 1-forms on a Manifold with Boundary, Convolution of Invariants of Reflection Groups, and Singular Projection of Smooth Surfaces, Russian Math., Surveys,34:2, (1979), 1–42.CrossRefGoogle Scholar
  2. 2.
    V. I. Arnold,Normal Forms for Functions near Degenerate Critical Points, the Weil Groups of A k, Dk, Ek, and Lagrangian Singularities, Functional Anal. Appl.,6 (1972), 254–272.CrossRefGoogle Scholar
  3. 3.
    V. I. Arnold,On Local Problems of Analysis, Vestn. Mos. UN-TA, Matematika, Mekhan.,25:2, (1970), 52–56.Google Scholar
  4. 4.
    J. S. W. Lamb,Reversing Symmetries in Dynamical Systems, Thesis, University of Amsterdam, (1994).Google Scholar
  5. 5.
    J. C. R. Medrado and M. A. Teixeira,Symmetric Singularities of Reversible vector Fields in dimension Three, in “Physica D”,112, (1998), 122–131.Google Scholar
  6. 6.
    W. Melo andJ. Palis,Geometric theory of dynamical systems, an introduction, Springer Verlag, NY, (1982).zbMATHGoogle Scholar
  7. 7.
    J. H. Rieger,Versal Topological Stratification and the bifurcation geometry of Map Germs of the Plane, Math. Proc. Camb. Phil. Soc.,107, (1990), 127–147.zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    M. B. Sevryuk,Reversible Systems, Edited by A. Dold and B. Eckmann, Springer-Verlag,1211, (1986).Google Scholar
  9. 9.
    J. Sotomayor,Generic One-Parameter of vector Fields on Two-Dimensional Manifolds, I.H.E.S.,43, (1974), 5–46.MathSciNetGoogle Scholar
  10. 10.
    J. Sotomayor and M. A. Teixeira,Vector fields near the boundary of for 3-manifold, in “Lecture Notes in Mathematics”1331, springer-Verlag, (1988), 169–195.Google Scholar
  11. 11.
    M. A. Teixeira,Singularities of reversible vector fields, in “Physica D”,1482, (1996), 1–18.Google Scholar
  12. 12.
    M. A. Teixeira,Local Reversibility and applications, in “Real and Complex Singularities, Ed. Bruce J. W. and Tari, F.”,412, Research Notes in Mathmatics, (2000), Chapman&Hall/CRC, 251–265.Google Scholar
  13. 13.
    S. M. Vishik,Vector Fields near the Boundary of the Manifold, Vestnik Moskovskogo Universiteta Matematika,27, (1972), 21–28.zbMATHGoogle Scholar
  14. 14.
    J. Yang,Polynomial normal forms for vector fields on ℝ 3, Duke Math. J.,106, (2001), 1–18.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser-Verlag 2001

Authors and Affiliations

  • João Carlos da Rocha Medrado
    • 1
  • Marco Antonio Teixeira
    • 2
  1. 1.IMEUFGGoiâniaBrasil
  2. 2.IMECCUNICAMPCampinasBrasil

Personalised recommendations