Advertisement

Archives of Pharmacal Research

, Volume 29, Issue 12, pp 1086–1090 | Cite as

Cytotoxic phenolic constituents ofAcer tegmentosum maxim

  • Ki Myun Park
  • Min Cheol Yang
  • Kyu Ha Lee
  • Kyung Ran Kim
  • Sang Un Choi
  • Kang Ro Lee
Articles Drug Design

Abstract

The chromatographic separation of the MeOH extract from the twigs ofAcer tegmentosum led to the isolation of ten phenolic compounds. The structures of these compounds were determined using spectroscopic methods as 3,7,3′,4′-tetramethyl-quercetin (1), 5,3′-dihydroxy-3,7,4′-trimethoxy flavone (2), 2,6-dimethoxy-p-hydroquinone (3), (-)-catechin (4), morin-3-O-α-L-lyxoside (5),p-hydroxy phenylethyl-O-ß-D-glucopyranoside (6), 3,5-dimethoxy-4-hydroxy phenyl-1-O-ß-D-glucoside (7), fraxin, (8), 3,5-dimethoxy-benzyl alcohol 4-O-ß-D-glucopyrano-side (9) and 4-(2,3-dihydroxy propyl)-2,6-dimethoxy phenyl ß-D-glucopyranoside (10). The compounds were examined for their cytotoxic activity against five cancer cell lines. Compound3 exhibited good cytotoxic activity against five human cancer cell lines with ED50 values ranging from 1.32 to 3.85 μM.

Key words

Acer tegmentosum Acereaceae Phenolic glycosides Cytotoxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, D. K., Illustrated Book of Korean Medicinal Herbs. Kyo-Hak publishing, Seoul, p 523 (1998).Google Scholar
  2. Adolf, H., Peter, P., and Eric, E. Conn., Dhurrin, (-)-catechin, flavonol glycosides and flavones fromChamaebatia foliolosa.Phytochemistry, 26, 1546–1547 (1987).CrossRefGoogle Scholar
  3. Bilia, A. R., Morelli, I., Hamburger, M., and Hostettmann, K., Flavanes and a-type proanthocyanidins fromPrunus prostrata.Phytochemistry, 43, 887–892 (1996).CrossRefGoogle Scholar
  4. Emi, O., Tetsuya, H., Takamitsu, M., Haruhiro, F., Masami, I., and Mikio, Y., Analgesic Components of Saposhnikovia Root (Saposhnikovia divaricata).Chem. Pharm. Bull., 49, 154–160 (2001).CrossRefGoogle Scholar
  5. Hatano, T., Hattori, S., Ikeda, Y., Shingu, T., and Okuda, Y., Tannins of Aceraceous plants. Part II. Gallotannins having a 1,5-anhydro-D-glucitol core and some ellagitannins from Acer species.Chem. Pharm. Bull., 38, 1902–1905 (1990).Google Scholar
  6. Hefeng, P. and Lennart, N. L., Phenolics from inner bark ofPinus sylvestris., Phytochemistry, 42, 1185–1189 (1996).CrossRefGoogle Scholar
  7. Hideaki, O., Mami, T., Shogo, I., Tomohiro, S., and Kazuo, Y., Phenolic compounds fromCoix lachryma-jobi var.ma-yuen., Phytochemistry, 28, 883–886 (1989).CrossRefGoogle Scholar
  8. Hidetoshi, A. and Gen, I. D., Isolation of antimicrobial compounds from Guava (Pisdium guajava L.) and their structural elucidation.Biosci. Biotechnol. Biochem., 66, 1727–1730 (2002).CrossRefGoogle Scholar
  9. Hideyuki, M., Hiroyuki, M., Chikako, A., Midori, A., Teruhiko, Y., and Junya, M., Isolation of α-glucosidase inhibitors from hyssop (Hyssopus officinalis).Phytochemistry, 65, 91–97 (2004).CrossRefGoogle Scholar
  10. Jorn, L., Alfred, B., Thomas, D., Turgen, S., Vidtor, W., Dierk, S., Dieter, S., and Sabine, R., Accumulation of tyrosol glucoside in transgenic potato plants expressing a parsley tyrosine decarboxylase. Hiroko Oguchi, lonone and lignan glycosides fromEpimedium diphyllum.Phytochemistry, 60, 683–689 (2002).CrossRefGoogle Scholar
  11. Junichi, K., Toru, I., Yasuko, T., Masateru, O., Yasuyuki, I., and Toshihiro, N., Water soluble constituents of Fennel. V Glycosides of Aromatic compounds.Chem. Pharm. Bull., 46, 1587–1590 (1998).Google Scholar
  12. Kangi, I., Gen, I. N., and Itsuo, N., Flavan-3-ol and procyanidin glycosides fromQuercus miygii. Phytochemistry, 26, 1167–1170 (1987).CrossRefGoogle Scholar
  13. Kanji, I., Hiroshi, S., Motoyoshi, S., and Koichiro, S., Phenyl glucosides from hairy root culture ofSwertia jponica.Phytochemistry, 29, 3823–3825 (1990).CrossRefGoogle Scholar
  14. Kubo, M., Inoue, T., and Nagai, M., Studies on the constituents of aceraceae plants. III. Structure of acerogenin B fromAcer nikoense Maxim.Chem. Pharm. Bull., 28, 1300–1303 (1980).Google Scholar
  15. Kubo, M., Nagai, M., and Inoue, T., Studies on the constituents of ceraceae plants. Carbon-13 nuclear magnetic resonance spectra of acerogenin A, rhododendrol, and related compounds, and structure of aceroside fromAcer nikoense.Chem. Pharm. Bull., 31, 1917–1922 (1983).Google Scholar
  16. Masataka, S. and Masao, K., Studies on the constituents ofOsmantus species. X. Structures of phenolic glucosides form the leaves ofOsmanthus asiaticus Nakai.Chem. Pharm. Bull., 40, 325–326 (1992).Google Scholar
  17. Renmin, L., Qinghua, S., Ailing, S., and Jichun, C., Isolation and purification of coumarin compounds fromCortex fraxinus by high-speed counter-current chromatography.J. Chromatogr. A., 1072, 195–199 (2005).CrossRefGoogle Scholar
  18. Stephen, J. P., Louise, N. J., and David, C. P., High-resolution1H- and13C-NMR. Spectra of D-glucopyranose, 2-acetamido-2-deoxy-D-glucopyranose, and related compounds in aqueous media.Carbohydrate Research, 59, 19–34 (1977).CrossRefGoogle Scholar
  19. Ying, W., Matthias, H., Joseph, G., and Kurt, H., Antimicrobial flavonoids fromPsiadia trinervia and their methylated and acetylated derivatives.Phytochemistry, 28, 2323–2327 (1989).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2006

Authors and Affiliations

  • Ki Myun Park
    • 2
  • Min Cheol Yang
    • 2
  • Kyu Ha Lee
    • 2
  • Kyung Ran Kim
    • 2
  • Sang Un Choi
    • 1
  • Kang Ro Lee
    • 2
  1. 1.Korea Research Institute of Chemical TechnologyTaejeonKorea
  2. 2.Natural Products Laboratory, College of PharmacySungkyunkwan UniversitySuwonKorea

Personalised recommendations