Advertisement

Studies on cardio-suppressant, vasodilator and tracheal relaxant effects ofSarcococca saligna

  • Muhammad Nabeel Ghayur
  • Anwarul Hassan Gilani
Articles Drug Development

Abstract

Sarcococca saligna is a shrub that is traditionally used for its medicinal properties in Pakistan. In this study we report the cardio-suppressant, vasodilator and tracheal relaxant activities of the aqueous-methanolic extract (Ss.Cr) of the plant. Ss.Cr, that tested positive for the presence of saponins, flavonoids, tannins, phenols, and alkaloids, exhibited a dose-dependent (0.3–5 mg/mL) negative inotropic and chronotropic effect on the isolated guinea-pig atrium which was resistant to atropine (1 μM) and aminophylline (10 μM) pretreatment. In rabbit thoracic aorta, Ss.Cr dose-dependently (0.1–3 mg/mL) relaxed the high K+ (80 mM) and phenylephrine (PE, 1 μM)-induced contractions, indicating a possible Ca++ channel blocking (CCB) effect. When tested against PE (1 μM) control peaks in normal Ca++ and Ca++-free Kreb's solution, Ss.Cr exhibited dose-dependent (0.1–3 mg/mL) inhibition, being more potent in relaxing the PE responses in Ca++-free Kreb's solution, thus indicating specific blockade of Ca++ release from the intracellular stores. Ss.Cr also relaxed the agonist-induced contractions in: a) rat aorta irrespective of the presence of endothelium or nitric oxide synthase inhibitor L-NAME and b) rabbit and guinea-pig tracheal strips. The data shows that Ss.Cr possesses possible Ca++ channel blocking activity which might be responsible for its observed cardio-suppressant, vasodilator and tracheal relaxant effects though more tests are required to confirm this Ca++ channel blocking effect.

Key words

Sarcococca saligna Intracellular Ca++ release inhibitor Cardio-suppressant Vasodilator Tracheal relaxant 

References

  1. Ajay, M., Gilani, A. H., and Mustafa, M. R., Effects of flavonoids on vascular smooth muscle of the isolated rat thoracic aorta.Life Sci., 74, 603–612 (2003).PubMedCrossRefGoogle Scholar
  2. Arunlakhshana, O. and Schild, H. O., Some quantitative uses of drug antagonists.Br. J. Pharmacol., 14, 48–58 (1959).Google Scholar
  3. Benham, C. D., Bolton, T. B., Lang, R. J., and Takewaki, T., Calcium-activated potassium channels in single smooth muscle cells of rabbit jejunum and guinea-pig mesenteric artery.J. Physiol., 371, 45–67 (1986).PubMedGoogle Scholar
  4. Fredholm, B. B. and Persson, C. G., Xanthine derivatives as adenosine receptor antagonists.Eur. J. Pharmacol., 81, 673–676 (1982).PubMedCrossRefGoogle Scholar
  5. Furchgott, R. F. and Zawadski, J. V., The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.Nature, 299, 373–376 (1980).CrossRefGoogle Scholar
  6. Gilani, A. H. and Cobbin, L. B., Cardioselectivity of himbacine: a muscarinic receptor antagonist.Naunyn-Schmiedeberg's Arch. Pharmacol., 332, 16–20 (1986).CrossRefGoogle Scholar
  7. Gilani, A. H., Ghayur, M. N., Khalid, A., Haq, Z., Choudhary, M. I., and Rahman, A., The presence of antispasmodic, antidiarrhoeal, antisecretory and acetylcholinesterase inhibitory constituents inSarcococca saligna.Planta Med., 71, 120–125 (2005).CrossRefGoogle Scholar
  8. Gilani, A. H., Shaheen, F., and Saeed, S. A., Cardiovascular actions ofDaucus carota.Arch. Pharmacal Res., 17, 150–153 (1994).CrossRefGoogle Scholar
  9. Guan, Y. Y., Kwan, C. Y., and Daniel, E. E., The effects of EGTA on vascular smooth muscle contractility in calcium free medium.Can. J. Physiol. Pharmacol., 66, 1053–1056 (1988).PubMedGoogle Scholar
  10. Hashimoto, T., Hirata, M., Itoh, T., Kanmura, Y., and Kuriyama, H., Inositol 1,4,5-triphosphate activates pharmaco-mechanical coupling in smooth muscle of rabbit mesenteric artery.J. Physiol., 370, 605–618, (1986).PubMedGoogle Scholar
  11. Kamei, J. and Kasuya, Y., Antitussive effects of Ca++ channel antagonists.Eur. J. Pharmacol., 212, 61–66 (1992).PubMedCrossRefGoogle Scholar
  12. Karaki, H., Ozaki, H., Hori, M., Mitsui-Saito, M., Amano, K., Harada, K., Miyamoto, S., Nakazawa, H., Won, K. J., and Sato, K., Calcium movements, distribution, and functions in smooth muscle.Pharmacol. Rev., 49, 157–230 (1997).PubMedGoogle Scholar
  13. Kirtikar, K. R. and Basu, B. D., Indian Medicinal Plants. Prabasi Press, Calcutta, pp. 2211–2212 (1933).Google Scholar
  14. Knekt, P., Jarvinen, R., Reunanen, A., and Maatela, J., Flavonoid intake and coronary mortality in Finland: a comparative study.Br. Med. J., 312, 478–481 (1996).Google Scholar
  15. Kohli, J. M., Zaman, A., and Kidwai, A. R., Separation and characterization of the alkaloids ofSarcococca pruniformis.Tetrahedron, 23, 3829–3835 (1967).PubMedCrossRefGoogle Scholar
  16. Miana, G. A. and Kaimuddin, M., Alkaloids ofSarcococca saligna Muel: salignine.Pak. J. Sci. Ind. Res., 12, 161–163 (1969).Google Scholar
  17. NRC (National Research Council), Guide for the Care and Use of Laboratory Animals. National Academy Press, Washington, D.C., pp. 1–7 (1996).Google Scholar
  18. Qiu, M. H., Nie, R. L., and Li, R., Chemical structures and bioactive screening ofPachysandra alkaloids.Yunnan Zhiwu Yanjiu, 16, 296–300 (1994).Google Scholar
  19. Rahman, A., Anjum, S., Farooq, A., Khan, M. R., and Choudhary, M. I., Two new pregnane-type steroidal alkaloids fromSarcococca saligna.Phytochemistry, 46, 771–775 (1997).CrossRefGoogle Scholar
  20. Rahman, A., Anjum, S., Farooq, A., Khan, M. R., and Choudhary, M. I., Phytochemical studies on steroidal alkaloids ofSarcococca saligna.Nat. Prod. Lett., 11, 297–304 (1998).Google Scholar
  21. Rahman, A., Anjum, S., Farooq, A., Khan, M. R., Perveen, Z., and Choudhary, M. I., Antibacterial steroidal alkaloids fromSarcococca saligna.J. Nat. Prod., 61, 202–206 (1998a).PubMedCrossRefGoogle Scholar
  22. Rahman, A., Choudhary, M. I., Khan, M. R., Anjum, S., Farooq, A., and Iqbal, M. Z., New steroidal alkaloids fromSarcococca saligna.J. Nat. Prod., 63, 1364–1368 (2000).CrossRefGoogle Scholar
  23. Rahman, A., Feroz, F., Haq, Z., Nawaz, S. A., Khan, M. R., and Choudhary, M. I., New steroidal alkaloids fromSarcococca saligna.Nat. Prod. Res., 17, 235–241 (2003).CrossRefGoogle Scholar
  24. Shinwari, Z. K., Khan, A. A., and Nakaike, T., Medicinal and Other Useful Plants of District Swat Pakistan. Al-Aziz Communications, Peshawar, pp. 97–98 (2003).Google Scholar
  25. Taggart, M. J., Menice, C. B., Morgan, K. G., and Wray, S., Effects of metabolic inhibition on intracellular Ca++, phosphorylation of myosin regulatory light chain and force in rat smooth muscle.J. Physiol., 499, 485–496 (1997).PubMedGoogle Scholar
  26. Thorin, E., Huang, P. L., Fishman, M. C., and Bevan, J. A., Nitric oxide inhibits alpha2-adrenoceptor-mediated endothelium-dependent vasodilation.Circ. Res., 82, 1323–1329 (1998).PubMedGoogle Scholar
  27. Tona, L., Kambu, K., Ngimbi, N., Cimanga, K., and Vlietinck, A. J., Antiamoebic and phytochemical screening of some Congolese medicinal plants.J. Ethnopharmacol., 61, 57–65 (1998).PubMedCrossRefGoogle Scholar
  28. Vanhoutte, P. M., Rubanyi, G. M., Miller, V. M., and Houston, D. S., Modulation of vascular smooth muscle contraction by endothelium.Ann. Rev. Physiol., 48, 307–330 (1986).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2006

Authors and Affiliations

  • Muhammad Nabeel Ghayur
    • 1
    • 2
  • Anwarul Hassan Gilani
    • 1
  1. 1.Department of Biological and Biomedical SciencesThe Aga Khan University Medical CollegeKarachiPakistan
  2. 2.Department of MedicineMcMaster University, St. Joseph's HospitalHamiltonCanada

Personalised recommendations