Advertisement

Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin

  • Jungsook Cho
Articles Drug Development

Abstract

The present study evaluated antioxidant and neuroprotective activities of hesperidin, a flavanone mainly isolated from citrus fruits, and its aglycone hesperetin using cell-free bioassay system and primary cultured rat cortical cells. Both hesperidin and hesperetin exhibited similar patterns of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activities. While hesperidin was inactive, hesperetin was found to be a potent antioxidant, inhibiting lipid peroxidation initiated in rat brain homogenates by Fe2+ and L-ascorbic acid. In consistence with these findings, hesperetin protected primary cultured cortical cells against the oxidative neuronal damage induced by H2O2 or xanthine and xanthine oxidase. In addition, it was shown to attenuate the excitotoxic neuronal damage induced by excess glutamate in the cortical cultures. When the excitotoxicity was induced by the glutamate receptor subtype-selective ligands, only the N-methyl-D-aspartic acid-induced toxicity was selectively and markedly inhibited by hesperetin. Furthermore, hesperetin protected cultured cells against the Aβ(25–35)-induced neuronal damage. Hesperidin, however, exerted minimal or no protective effects on the neuronal damage tested in this study. Taken together, these results demonstrate potent antioxidant and neuroprotective effects of hesperetin, implying its potential role in protecting neurons against various types of insults associated with many neurodegenerative diseases.

Key words

Hesperetin Hesperidin Neuroprotection Antioxidant Excitotoxicity Beta-amyloid (Aβ

References

  1. Behl, C. and Moosmann, B., Causes and consequences of oxidative stress in Alzheimer’s disease.Free Rad. Biol. Med., 33, 182–191 (2002).PubMedCrossRefGoogle Scholar
  2. Behl, C., Davis, J. B., Lesley, R., and Schubert, D., Hydrogen peroxide mediates amyloid-beta protein toxicity.Cell, 77, 817–827 (1994).PubMedCrossRefGoogle Scholar
  3. Bok, S. H., Lee, S. H., Park, Y. B., Bae, K. H., Son, K. H., Jeong, T. S., and Choi, M. S., Plasma and hepatic cholesterol and hepatic activities of 3-hydroxy-3-methyl-glutaryl-CoA reductase and acyl CoA: cholesterol transferase are lower in rats fed citrus peel extract or a mixture of citrus bioflavonoids.J. Nutr., 129, 1182–1185 (1999).PubMedGoogle Scholar
  4. Cho, J. and Lee, H.-K., Wogonin inhibits excitotoxic and oxidative neuronal damage in primary cultured rat cortical cells.Eur. J. Pharmacol., 485, 105–110 (2004).PubMedCrossRefGoogle Scholar
  5. Cho, J., Joo, N. E., Kong, J.-Y., Jeong, D.-Y., Lee, K. D., and Kang, B.-S., Inhibition of excitotoxic neuronal death by methanol extract of Acori graminei rhizoma in cultured rat cortical neurons.J. Ethnopharmacol., 73, 31–37 (2000).PubMedCrossRefGoogle Scholar
  6. Cho, J., Kim, Y. H., Kong, J.-Y., Yang, C.-H., and Park, C.-G., Protection of cultured rat cortical neurons from excitotoxicity by asarone, a major essential oil component in the rhizomes ofAcorus gramineus.Life Sci., 71, 591–599 (2002).PubMedCrossRefGoogle Scholar
  7. Cho, J., Kim, H. M., Ryu, J.-H., Jeong, Y. S., Lee, Y. S., and Jin, C., Neuroprotective and antioxidant effects of the ethyl acetate fraction prepared fromTussilago farfara L.Biol. Pharm. Bull., 28, 455–460 (2005).PubMedCrossRefGoogle Scholar
  8. Cho, J., Kong, J.-Y., Jeong, D.-Y., Lee, K. D., Lee D. U., and Kang, B.-S., NMDA receptor-mediated neuroprotection by essential oils from rhizomes ofAcorus gramineus.Life Sci., 68, 1567–1573 (2001).PubMedCrossRefGoogle Scholar
  9. Choi, J. S., Chung, H. Y., Kang, S. S., Jung, M. J., Kim, J. W., No, J. K., and Jung, H. A., The structure-activity relationship of flavonoids as scavengers of peroxynitrite.Phytother. Res., 16, 232–235 (2002).PubMedCrossRefGoogle Scholar
  10. Dew, T. P., Day, A. J., and Morgan, M. R., Xanthine oxidase activityin vitro: effects of food extracts and components.J. Agric. Food Chem., 53, 6510–6515 (2005).PubMedCrossRefGoogle Scholar
  11. Dok-Go, H., Lee, K. H., Kim, H. J., Lee, E. H., Lee, J., Song, Y. S., Lee, Y. H., Jin, C., Lee, Y. S., and Cho, J., Neuroprotective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin and quercetin 3-methyl ether, isolated fromOpuntia ficus-indica var.saboten.Brain Res., 965, 130–136 (2003).PubMedCrossRefGoogle Scholar
  12. Dugan, L. L., Sensi, S. L., Canzoniero, L. M., Handran, S. D., Rothman, S. M., Lin, T. S., Goldberg, M. P., and Choi, D. W., Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate.J. Neurosci., 15, 6377–6388 (1995).PubMedGoogle Scholar
  13. Galati, E. M., Monforte, M. T., Kirjavainen, S., Forestieri, A. M., Trovato, A., and Tripodo, M. M., Biological effects of hesperidin, a Citrus flavonoid (Note I): antiinflammatory and analgesic activity.Farmaco, 40, 709–712 (1994).PubMedGoogle Scholar
  14. Galati, E. M., Trovato, A., Kirjavainen, S., Forestieri, A. M., Rossitto, A., and Monforte, M. t., Biological effects of hesperidin, a Citrus flavonoid (Note III): antihypertensive and diuretic activity in rat.Farmaco, 51, 219–221 (1996).PubMedGoogle Scholar
  15. Garg, A., Garg, S., Zaneveld, L. J., and Singla, A. K., Chemistry and pharmacology of the Citrus bioflavonoid hesperidin.Phytother. Res., 15, 655–669 (2001).PubMedCrossRefGoogle Scholar
  16. Halliwell, B., Reactive oxygen species and the central nervous system.J. Neurochem., 59, 1609–1623 (1992).PubMedCrossRefGoogle Scholar
  17. Harris, M. E., Hensley, K., Butterfield, D. A., Leedle, A., and Caney, J. M., Direct evidence of oxidative injury produced by the Alzheimer’s beta-amyloid peptide (1–40) in cultured hippocampal neurons.Exp. Neurol., 131, 193–202 (1995).PubMedCrossRefGoogle Scholar
  18. Hirata, A., Murakami, Y., Shoji, M., Kadoma, Y., and Fujisawa, S., Kinetics of radical-scavenging activity of hesperetin and hesperidin and their inhibitory activity on COX-2 expression.Anticancer Res., 25, 3367–3374 (2005).PubMedGoogle Scholar
  19. Jung, H. A., Jung, M. J., Kim, J. Y., Chung, H. Y., and Choi, J. S., Inhibitory activity of flavonoids from Prunus davidiana and other flavonoids on total ROS and hydroxyl radical generation.Arch. Pharm. Res., 26, 809–815 (2003).PubMedGoogle Scholar
  20. Jung, Y.-S., Kang, T.-S., Yoon, J.-H., Joe, B.-Y., Lim, H.-J., Seong, C.-M., Park, W. K., Kong, J. Y., Cho, J., and Park, N. S., Synthesis and evaluation of 4-hydroxyphenylacetic acid amides and 4-hydroxycinnamamides as antioxidants.Bioorg. Med. Chem. Lett., 12, 2599–2602 (2002).PubMedCrossRefGoogle Scholar
  21. Kim, D.-H., Jung, E.-A., Sohng, I.-S., Han, J.-A., Kim, T.-H., and Han, M. J., Intestinal bacterial metabolism of flavonoids and its relation to some biological activities.Arch. Pharm. Res., 21, 17–23 (1998).PubMedGoogle Scholar
  22. Kim, J. Y., Jung, K. J., Choi, J. S., and Chung, H. Y., Hesperetin: a potent antioxidant against peroxynitrite.Free Rad. Res., 38, 761–769 (2004).CrossRefGoogle Scholar
  23. Mandel, S. and Youdim, M. B., Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases.Free Rad. Biol. Med., 37, 304–317 (2004).PubMedCrossRefGoogle Scholar
  24. Matsuda, H., Yano, M., Kubo, M., Iinuma, M., Oyama, M., and Mizuno, M., Pharmacological study on citrus fruits. II. Anti-allergic effect of fruit of Citrus unshiu MARKOVICH (2). On flavonoid components.Yakugaku Zasshi., 111, 193–198 (1991).PubMedGoogle Scholar
  25. Middleton, E. Jr., Kandaswami, C., and Theoharides, T. C., The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, cancer.Pharmacol. Rev., 52, 673–751 (2000).PubMedGoogle Scholar
  26. Miyake, Y., Yamamoto, K., Tsujihara, N., and Osawa, T., Protective effects of lemon flavonoids on oxidative stress in diabetic rats.Lipids, 33, 689–695 (1998).PubMedCrossRefGoogle Scholar
  27. Nagao, A., Seki, M., and Kobayashi, H., Inhibition of xanthine oxidase by flavonoids.Biosci. Biotechnol. Biochem., 63, 1787–1790 (1999).PubMedCrossRefGoogle Scholar
  28. Orallo, F., Alvarez, E., Basaran, H., and Lugnier, C., Comparative study of the vasorelaxant activity, superoxide-scavenging ability and cyclic nucleotide phosphodiesterase-inhibitory effects of hesperetin and hesperidin.Naunyn Schmiedebergs Arch. Pharmacol., 370, 452–463 (2004).PubMedCrossRefGoogle Scholar
  29. Ratty, A. K. and Das, N. P., Effects of flavonoids on nonenzymatic lipid peroxidation: structure-activity relationship.Biochem. Med. Metab. Biol., 39, 69–79 (1988).PubMedCrossRefGoogle Scholar
  30. Reynolds, I. J. and Hastings, T. G., Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation.J. Neurosci., 15, 3318–3327 (1995).PubMedGoogle Scholar
  31. Saija, A., Scalese, M., Lanza, M., Marzullo, D., Bonina, F., and Castelli, F., Flavonoids as antioxidant agents: importance of their interaction with biomembranes.Free Rad. Biol. Med., 19, 481–486 (1995).PubMedCrossRefGoogle Scholar
  32. Sauer, D. and Fagg, G. E., Excitatory amino acids, excitotoxicity and neurodegenerative disorders. In: Krogsgaard-Larsen, P., and Hansen, J. J. (Eds.), Excitatory Amino Acid Receptors. Ellis Horwood, New York, pp. 13–33 (1992).Google Scholar
  33. Sengpiel, B., Preis, E., Krieglstein, J., and Prehn, J. H., NMDA-induced superoxide production and neurotoxicity in cultured rat hippocampal neurons: role of mitochondria.Eur. J. Neurosci., 10, 1903–1910 (1998).PubMedCrossRefGoogle Scholar
  34. Smith, M. A., Perry, G., Richey, P. L., Sayre, L. M., Anderson, V. E., Beal, M. F., and Kowall, N., Oxidative damage in Alzheimer’s disease.Nature, 382, 120–121 (1996).PubMedCrossRefGoogle Scholar
  35. Wilmsen, P. K., Spada, D. S., and Salvador, M., Antioxidant activity of the flavonoid hesperidin in chemical and biological systems.J. Agric. Food Chem., 53, 4757–4761 (2005).PubMedCrossRefGoogle Scholar
  36. Xie, C., Lovell, M. A., Xiong, S., Kindy, M. S., Guo, J.-T., Xie, J., Amaranth, V., Montine, T. J., and Markesbery, W. R., Expression of glutathione-S-transferase isozyme in the SY5Y neuroblastoma cell line increases resistance to oxidative stress.Free Rad. Biol. Med., 31, 73–81 (2001).PubMedCrossRefGoogle Scholar
  37. Yoon, I., Lee, K. H., and Cho, J., Gossypin protects primary cultured rat cortical cells from oxidative stress- and β-amyloid-induced toxicity.Arch. Pharm. Res., 27, 454–459 (2004).PubMedCrossRefGoogle Scholar
  38. Yuting, C., Rongliang, Z., Zhongjian, J., and Yong, J., Flavonoids as superoxide scavengers and antioxidants.Free Rad. Biol. Med., 9, 19–21 (1990).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2006

Authors and Affiliations

  1. 1.Department of Pharmacology, College of MedicineDongguk UniversityGyeongbukKorea

Personalised recommendations