Advertisement

Journal of Genetics

, Volume 75, Issue 3, pp 281–286 | Cite as

Parasexual recombination in fungi

  • A. John Clutterbuck
Article

Abstract

Parasexual recombination is a valuable tool in the laboratory, particularly for asexual fungi, and a number of developments in methodology are outlined. In biotechnology, the parasexual cycle has proved less useful than at one time predicted, but it retains a function in analysis of the products of genetic manipulation, and as a convenient detection system for environmental chemicals that may disturb mitosis. In nature, recent evidence suggests that parasexual recombination is rare, in part at least because of the prevalence of heterokaryon incompatibility of many wild fungi.

Keywords

Parasexual cycle recombination fungi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksenko A. Y. and Clutterbuck A. J. 1995 Recombinational stability of replicating plasmids inAspergillus nidulans during transformation, vegetative growth and sexual reproduction.Curr. Genet. 28: 87–93PubMedCrossRefGoogle Scholar
  2. Arnau J. and Oliver R. P. 1993 Inheritance and alteration of transforming DNA during an induced parasexual cycle in the imperfect fungusCladosporium fulvm. Curr. Genet. 23: 508-511, with erratum:Curr. Genet. 24: 278CrossRefGoogle Scholar
  3. Arnau J., Housego A. P. and Oliver R. P. 1994 The use of RAPD markers in the genetic-analysis of the plant-pathogenic fungusCladosporium fulvum.Curr. Genet. 25: 438–444PubMedCrossRefGoogle Scholar
  4. Bagagli E., Furlaneto M. C., Pizzirani-Kleiner A. and Azevedo J. L. 1995 Genetic recombinants inTrichoderma pseudokoningii (Rifai) without typical parasexuality.Can. J. Microbiol. 41: 1132–1134Google Scholar
  5. Bal J., Bartnik E., Goryluk B. and Pieniazek N. J. 1975 An easy way of obtainingAspergillus nidulans haploids in the parasexual cycle using N-glycosyl polifungin.Genet. Res. 25: 249–252PubMedGoogle Scholar
  6. Ball C. 1973 Improvement of penicillin productivity inPenicillium chrysogenum by recombination. InProceedings of 1st international symposium on the genetics of industrial microorganisms (Elsevier) vol. 2, pp. 227–237Google Scholar
  7. Bodie A. E., Armstrong G. L. and Dunn-Coleman N. S. 1994 Strain improvement of chymosin-producing strains ofAspergillus niger var.awamori using parasexual recombination.Enz. Microb. Technol. 16:376–382CrossRefGoogle Scholar
  8. Bos C. J., Debets A. J. M., Swart K., Huybers A., Kobas G. and Slakhorst S. M. 1988 Genetic analysis and the construction of master strains for assignment of six genes to linkage groups inAspergillus niger. Curr. Genet. 14: 437–443CrossRefGoogle Scholar
  9. Bos C. J., Debets A. J. M., Nachtegaal H., Slakhorst S. M. and Swart K. 1992 Isolation of auxotrophic mutants ofAspergillus niger by filtration enrichment and lytic enzymes.Curr. Genet. 21: 117–120CrossRefGoogle Scholar
  10. Burdon J. J., Marshall D. R. and Luig N. H. 1981 Isozyme analysis indicates that a virulent cereal rust pathogen is a somatic hybrid.Nature 293: 565–566CrossRefGoogle Scholar
  11. Butcher A. C. 1968 The relationship between sexual outcrossing and heterokaryon incompatibility inAspergillus nidulans.Heredity 23: 443–452PubMedCrossRefGoogle Scholar
  12. Chacko R. J., Weidemann G. J., Tebeest D. O. and Correll J. C. 1994 The use of vegetative compatibility and heterokaryosis to determine potential asexual gene exchange inColletotrichum gloeosporioides.Biol. Control 4: 382–389CrossRefGoogle Scholar
  13. Clutterbuck A. J. 1992 Sexual and parasexual genetics ofAspergillus species. InAspergillus: Biology and industrial applications (eds.) J. W. Bennett and M. A. Klich (Boston: Butterworth-Heinemann) pp 3–18Google Scholar
  14. Debets A. J. M., Swart K. and Bos C. J. 1989 Mitotic mapping in linkage group V ofAspergillus niger based on selection of auxotrophic recombinants by Novozyme enrichment.Can. J. Microbiol. 35: 982–988PubMedCrossRefGoogle Scholar
  15. Debets J. M., Swart K. and Bos C. J. 1990a Genetic analysis ofAspergillus niger. isolation of chlorate resistant mutants, their use in mitotic mapping and evidence for an eighth linkage group.Mol. Gen. Genet. 221: 453–458PubMedCrossRefGoogle Scholar
  16. Debets J. M., Swart K., Holub E. F., Goosen T. and Bos C. J. 1990b Genetic analysis ofamdS transformants ofAspergillus niger and their use in chromosome mapping.Mol. Gen. Genet. 222: 284–290PubMedCrossRefGoogle Scholar
  17. Debets F., Swart K., Hoekstra R. F. and Bos C. J. 1993 Genetic maps of eight linkage groups ofAspergillus niger based on mitotic mapping,Curr. Genet. 23: 47–53PubMedCrossRefGoogle Scholar
  18. Durand N., Reymond P. and Févre M. 1993 Randomly amplified polymorphic DNAs assess recombination following an induced parasexual cycle inPenicillium roqueforti, Curr. Genet. 24: 417–420PubMedCrossRefGoogle Scholar
  19. Geiser D. M., Arnold M. L. and Timberlake W. E. 1994 Sexual origins of BritishAspergillus nidulans isolates.Proc. Natl. Acad. Sci. USA 91: 2349–2352PubMedCrossRefGoogle Scholar
  20. Goodwin S. B., Webster R. K. and Allard R. W. 1994 Evidence for mutation and migration as sources of genetic variation in populations ofRhynchosporium secalis.Phytopathology. 84: 1047–1053CrossRefGoogle Scholar
  21. Hastie M. J. 1970 Benlate-induced instability ofAspergillus diploids.Nature 226: 771PubMedCrossRefGoogle Scholar
  22. Hocart M. J. and McNaughton J. E. 1994 Interspecific hybridization betweenPseudocercosporella herpotrichoides andP. anguioides achieved through protoplast fusion.Mycol. Res. 98: 47–56Google Scholar
  23. Holt G., Edwards G. F. St L. and Macdonald K. D. 1976 The genetics of mutants impaired in the biosynthesis of penicillin. InProceedings of 2nd international symposium on the genetics of industrial microorganisms (ed.) K. D. Macdonald (London: Academic Press) pp. 199–211Google Scholar
  24. Jha S. H. and Sinha U. 1991 selection or induction of griseofulvin produced haploids inAspergillus nidulans.Acta Bot. Indica 19: 171–175Google Scholar
  25. Jha S. N. and Sinha U. 1992 Use of griseofulvin for mitotic mapping ofp-fluorophenylalanine resistance markers inAspergillus nidulans.Ind. J. Plant Breed. 52: 132–138Google Scholar
  26. Käfer E. 1977 Meiotic and mitotic recombination inAspergillus and its chromosomal aberrations.Adv. Genet. 19:33–131PubMedCrossRefGoogle Scholar
  27. Käfer E., Scott B.R. and Kappas A. 1986 Systems and results of tests for chemical induction of mitotic malsegregation and aneuploidy inAspergillus nidulans.Mutat. Res. 167: 9–34PubMedGoogle Scholar
  28. Lhoas P. 1961 Mitotic haploidisation by treatmentof Aspergillus niger diploids withp-fluorophenylalanine.Nature 190: 744PubMedCrossRefGoogle Scholar
  29. LoBuglio K. F., Pitt J. I. and Taylor J. W. 1994 Independent origins of the synnematousPenicillium species,P. duclauxii, P. clavigerum andP. vulpinum, as assessed by two ribosomal DNA regions.Mycol. Res. 98: 250–256Google Scholar
  30. McCully K. S. and Forbes E. 1965 The use ofp-fluorophenylalanine with “master strains” ofAspergillus nidulans for assigning genes to linkage groups.Genet. Res. 6: 352–359PubMedCrossRefGoogle Scholar
  31. Macdonald K. D., Holt G. and Ditchburn P. 1972 The genetics of penicillin production. InProceedings of 4th international fermentation symposium: Fermentation today (Osaka) pp. 251 – 257Google Scholar
  32. Morpurgo G. 1994 Research inAspergillus nidulans genetics.Genetica 94: 283–289CrossRefGoogle Scholar
  33. Parry J. M. 1993 The detection and assessment of the aneugenic potential of environmental chemicals: the European Community Aneuploidy Project.Mutat. Res. 287: 3–15PubMedGoogle Scholar
  34. Perkins D. D. and Barry E. G. 1977 The cytogenetics ofNeurospora.Adv. Genet. 19: 133–285PubMedCrossRefGoogle Scholar
  35. Pontecorvo G. 1954 Mitotic recombination in the genetic systems of filamentous fungi.Caryologia Supl. 192 – 200Google Scholar
  36. Pontecorvo G. 1956 The parasexual cycle in fungi.Annu. Rev. Microbiol. 10: 393–400PubMedCrossRefGoogle Scholar
  37. Pontecorvo G. and Käfer E. 1958 Genetic analysis based on mitotic recombination.Adv. Genet. 9: 71–104PubMedCrossRefGoogle Scholar
  38. Pontecorvo G., Roper J. A. and Forbes E. 1953 Genetic recombination without sexual reproduction inAspergillus niger.J. Gen. Microbiol. 8: 198–210PubMedGoogle Scholar
  39. Rizwana R. and Powell W. A. 1995 Ultraviolet light-induced heterokaryon formation and parasexuality inCryphonectria parasitica.Exp. Mycol. 19: 48–60CrossRefGoogle Scholar
  40. Roper J. A. 1966 Mechanisms of inheritance: the parasexual cycle. InThe fungi (eds.) G. C. Ainsworth and A. S. Sussman (New York: Academic Press) vol. 2, pp. 589–617Google Scholar
  41. Sarangbin S., Morikawa S., Kirimura K. and Usami S. 1994 Formation of autodiploid strains inAspergillus niger and their application to citric acid production from starch.J. Ferment. Bioeng. 77: 474–478CrossRefGoogle Scholar
  42. Stasz T. E. and Harmon G. E. 1990 Nonparental progeny resulting from protoplast fusion inTrichoderma in the absence of parasexuality.Exp. Mycol. 14: 145–159CrossRefGoogle Scholar
  43. Tinline R. D. and MacNeil B. H. 1969 Parasexuality in plant pathogenic fungi.Annu. Rev. Phytopathol. 7: 147–170CrossRefGoogle Scholar
  44. Upshall A. 1981 Naturally occurring diploid isolates ofAspergillus nidulans.J. Gen. Microbiol. 122: 7–11PubMedGoogle Scholar
  45. Upshall A., Giddings B. and Mortimore I. D. 1977 The use of benlate for distinguishing between haploid and diploid strains ofAspergillus nidulans andAspergillus terreues.J. Gen. Microbiol. 100: 413–418Google Scholar
  46. Van Arkel G. A. 1963 Sodium arsenate as an inducer of somatic reduction.Aspergillus Newsl. 4: 9Google Scholar
  47. Varga J. and Croft J. H. 1994 Assignment of RFLP, RAPD and isozyme markers toAspergillus nidulans chromosomes, using chromosome-substituted segregants of a hybrid ofA. nidulans and A. quadrilineatus.Curr. Genet. 25: 311–317PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1996

Authors and Affiliations

  • A. John Clutterbuck
    • 1
  1. 1.Institute of Biomedical and Life Sciences, Molecular Genetics Division, Pontecorvo BuildingUniversity of GlasgowGlasgowU K

Personalised recommendations