Infection

, Volume 26, Issue 4, pp 222–226 | Cite as

Comparative study of reactogenicity and immunogenicity of new and established measles, mumps and rubella vaccines in healthy children

  • V. Usonis
  • V. Bakasenas
  • K. Chitour
  • R. Clemens
Clinical and Epidemiological Studies Originalia

Summary

Concerns about the association of aseptic meningitis with measles-mumpsrubella (MMR) vaccines containing the Urabe Am 9 strain and the increasing worldwide demand for MMR vaccines, prompted the development of a new mumps vaccine strain (RIT 4385) by SmithKline Beecham Biologicals (SB) as part of a trivalent live attenuated MMR vaccine. The present study assessed the immunogenicity and reactogenicity of two lots of ‘Priorix’* with a widely used and established vaccine M-M-R II (Merck & Co. Inc.) as comparator vaccine. 255 healthy children, 12 to 24 months of age, were enrolled in a single-blind study and randomly allocated to receive a single dose of one of two lots of “Priorix” or M-M-R II vaccine. Vaccinees were followed up for six weeks post-vaccination for solicited and unsolicited symptoms. Immunogenicity was determined in pre- and 60 days post-vaccination sera using commercial immunoassays for measles, mumps and rubella antibodies. There were no significant differences in immune responses between groups for any of the three vaccine components. In initially seronegative subjects, the respective post-vaccination seroconversion rates for ‘Priorix’ lots 1 and 2, and M-M-R II were 100, 100 and 97.6% for measles antibodies, 91.7, 95.1 and 94% for mumps antibodies and 100, 100 and 100% for rubella antibodies, respectively. GMTs for the three groups were 3,076, 3,641 and 3,173 mIU/ml for measles antibodies, 934, 900 and 1,043 U/ml for mumps antibodies, and 86.4, 87.5 and 97.1 IU/ml for rubella antibodies, respectively. The incidence of local symptoms was significantly lower for both ‘Priorix’ lots (17.6 and 15.3% for lots 1 and 2, respectively) than for M-M-R II (37.6%). Fever≧38.1°C during the six-week observation period occurred in approximately 25% of all subjects in all groups with no differences between the groups. No parotid/salivary gland swelling or signs of suspected meningism were reported, and there were no serious adverse events related to vaccination. The new MMR vaccine ‘Priorix’ containing the new RIT 4385 mumps strain was safe and had a significantly improved local tolerability profile over the comparator vaccine, M-M-R II, while eliciting an at least equivalent immune response.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    World Health Organization: Expanded programme on immunisation: a report from the programme on communicable diseases. WHO, Copenhagen 1989, pp. 10–13.Google Scholar
  2. 2.
    Nokes, D. J., Anderson, R. M.: Application of mathematical models to the design of immunisation strategies. Rev. Med. Microbiol. 4 (1993) 1–7.Google Scholar
  3. 3.
    Bundesamt für Gesundheitswesen: Masern-, Mumps-, Röteln-Impfung: Empfehlung des Bundesamtes für Gesundheitswesen. Bull. BAG 38 (1994), 650–651.Google Scholar
  4. 4.
    Hilleman, M. R.: The development of live attenuated mumps virus vaccine in historic perspective and its role in the evolution of combined measles-mumps-rubella. In:Plotkin, S., Fantini, B. (eds.). Vaccinia vaccination, and vaccinology: Jenner, Pasteur and their successors. Elsevier, Paris 1996, pp. 283–292.Google Scholar
  5. 5.
    Peltola, H., Heinonen, O. P., Valle, M., Paunio, M., Virtanen, M., Karanko, V., Cantell, K.: The elimination of indigenous measles, mumps and rubella from Finland by a 12-year two-dose vaccination programme. N. Engl. J. Med. 331 (1994) 1397–1402.PubMedCrossRefGoogle Scholar
  6. 6.
    Cochi, S. L., Wharton, M., Plotkin, S. A.: Mumps vaccine. In:Plotkin, S. A., Morimer, E. A., (eds.). Vaccines, Saunders, Philadelphia, 1994, pp. 277–301.Google Scholar
  7. 7.
    White, C., Koplan, J., Orenstein, W.: Benefits, risks, and costs of immunisation for measles, mumps and rubella. Am. J. Public Health 75 (1985) 739–744.PubMedGoogle Scholar
  8. 8.
    Anonymous: Mumps meningitis and MMR vaccination. Lancet ii (1989) 1015–1016.Google Scholar
  9. 9.
    Miller, E., Goldacre, M., Pugh, S., Colville, A., Farrington, P., Flower, A., Nash, J., MacFarlane, L., Tettmar, R.: Risk of aseptic meningitis after measles, mumps and rubella vaccine in UK children. Lancet 341 (1993) 979–982.PubMedCrossRefGoogle Scholar
  10. 10.
    Balraj, V., Miller, E.: Complications of mumps vaccines. Rev. Med. Virol. 5 (1995), 219–227.CrossRefGoogle Scholar
  11. 11.
    Takeuchi, K., Tanabyashi, K., Hishiyama, M., Yamada, A., Sugiura, A.: Variations of nucleotide sequences and transcription of the SH gene among mumps virus strains. Virology 181 (1991) 364–366.PubMedCrossRefGoogle Scholar
  12. 12.
    Afzal, M. A., Pickford, A. R., Forsey, T., Heath, A. B., Minor, P. D.: The Jeryl Lynn vaccine strain of mumps virus is a mixture of two distinct isolates. J. Gen. Virol. 74 (1993) 917–920.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen, R. T., Markowitz, L. E., Albrecht, P., Stewart, J. A., Mofenson, L. M., Preblud, S. R., Orenstein, W. A.: Measles anti-body: reevaluation of protective titres. J. Infect. Dis. 162 (1990) 1036–1042.PubMedGoogle Scholar
  14. 14.
    Samb, B., Aaby, P., Whittle, H. L., Coll Seck, A. M., Rahman, S., Bennett, J., Markowitz, L., Simondom, F., Johnson, C. E., Kumar, M. L., Whitwell, J. K., Staehle, B. O., Rome, L. P., Dinakar, C., Hurni, W., Nalin, D. R.: Serologic status and measles attack rates among vaccinated and unvaccinated children in rural Senegal. Pediatr. Infect. Dis. J. 14 (1995) 203–209.PubMedCrossRefGoogle Scholar
  15. 15.
    Skendzel, L. P.: Rubella immunity: defining the level of protective antibody. Am. J. Clin. Pathol. 106 (1996) 170–174.PubMedGoogle Scholar
  16. 16.
    Hilleman, M. R., Weibel, R. E., Buynak, E. B., Stokes, J., Whitman, J. E.: Live attenuated mumps-virus vaccine. N. Engl. J. Med. 276 (1967) 252–258.PubMedGoogle Scholar
  17. 17.
    Weibel, R. E., Buynak, E. B., McLean, A. A., Roehm, R. R., Hilleman, M. R.: Persistence of antibody in human subjects for 7 to 10 years following administration of combined live attenuated measles, mumps and rubella virus vaccines (40967). Proc. Soc. Exp. Biol. Med. 165 (1980) 260–263.PubMedGoogle Scholar
  18. 18.
    Hilleman, M. R., Stokes, J., Buynak, E. B., Weibel, R., Halenda, R., Goldner, H.: Enders’ live measles-virus vaccine with human immune immunoglobulin. Am. J. Dis. Child 103 (1962) 372–379.PubMedGoogle Scholar
  19. 19.
    Christenson, B., Böttiger, M.: Methods for screening the naturally acquired and vaccine-induced immunity to the measles virus. Biologicals 18 (1990) 207–211.PubMedCrossRefGoogle Scholar
  20. 20.
    Neuman, F. W., Weber, J. M., Jessamine, A. G., O'Shaughnessy, M.: Comparison of measles antihemolysin test, enzyme-linked immunosorbent assay, and hemagglutination inhibition test with neutralisation test for determination of immune status. J. Clin. Microbiol. 22 (1985) 296–298.Google Scholar
  21. 21.
    Skata, H., Hishiyama, M., Sigiura, A.: Enzyme-linked immunosorbent assay compared with neutralization tests for evaluation of live mumps vaccines. J. Clin. Microbiol. 19 (1984) 21–25.Google Scholar
  22. 22.
    Kimura, M., Kuno-Sakai, H., Yamazaki, S., Yamada, A., Hishiyama, M., Kamiya, H., Ueda, K., Murase, T., Hirayama, M., Oya, A., Nozaki, S., Murata, R.: Adverse events associated with MMR vaccines in Japan. Acta Paediatr. Jpn. 38 (1996) 205–211.PubMedGoogle Scholar
  23. 23.
    Potin M., Tanaka, J., Chitour K.: Comparison of a novel measles-mumps-rubella (MMR) vaccine with a licensed MMR vaccine. 7th Congress Latinoamericano de Infectologia, 3rd Congreso Venezolano de Infectologia, Bol. Venez. Infectol. 7 (Suppl. 1) (1997) 58.Google Scholar
  24. 24.
    Briss, P. A., Fehrs, L. J., Parker, R. A., Wright, P. F., Sannalla, E. C., Hutcheson, R. H., Schaffner, W: Sustained transmission of mumps in a highly vaccinated population: assessment of primary vaccine failure and waning vaccine-induced immunity. J. Inf. Dis.169 (1994) 77–82.Google Scholar
  25. 25.
    Mathias, R. C., Meekison, W. G., Arcand, T. A., Schecter, M. T.: The role of secondary vaccine failures in measles outbreaks. Am. J. Public Health 79 (1989) 475–478.PubMedCrossRefGoogle Scholar
  26. 26.
    Johnson, C. E., Kumar, M. L., Whitwell, J. K., Staehle, B. O., Rome, L. P., Dinkar, C., Hurni, W., Nalin, D. R.: Antibody persistence after primary measles-mumps-rubella vaccine and response to second dose given at four to six vs eleven to thirteen years. Pediatr. Inf. Dis. J. 15 (1996) 687–692.CrossRefGoogle Scholar
  27. 27.
    Böttiger, M.: Boosting effect of a second dose of measles vaccine given to 12-year-old children. Scand. J. Infect. Dis. 25 (1993) 239–243.PubMedCrossRefGoogle Scholar
  28. 28.
    Schwarzer, S., Reibel, S., Lang, A. B., Struck, M. M., Finkel, B., Gerike, E., Tischer, A., Gassner, M., Glück, R., Stück, B., Cryz, S. J.: Safety and characterization of the immune response engendered by two combined measles, mumps and rubella vaccines. Vaccine 16 (1998) 298–304.PubMedCrossRefGoogle Scholar
  29. 29.
    Anderson, R. M., May, R. M.: Immunisation and herd immunity. In:Arnold, E. (ed.): Modern vaccines, a Lancet review. Lancet 335 (1990) 24–33.Google Scholar

Copyright information

© MMV Medizin Verlag GmbH München 1998

Authors and Affiliations

  • V. Usonis
    • 1
  • V. Bakasenas
    • 2
  • K. Chitour
    • 3
  • R. Clemens
    • 3
  1. 1.Centre of PediatricsVilnius UniversityVilniusLithuania
  2. 2.Centre for Infectious Diseases Control and ProphylaxisVilniusLithuania
  3. 3.Smith Kline Beecham BiologicalsRixensartBelgium

Personalised recommendations