Acta Endoscopica

, Volume 37, Issue 2, pp 165–179 | Cite as

Impact de la génétique moléculaire sur le dépistage du cancer colorectal héréditaire non polypoïde

  • R. Caspari
  • Ch. Lamberti
Article

Résumé

Le syndrome HPNCC (Cancer colorectal héréditaire non polypoïde) connu aussi sous l’appellation de «Syndrome de Lynch» est une prédisposition précancéreuse autosomale dominante responsable d’environ 2 à 5 % des cancers colorectaux (CCR). En outre, le risque de développer des lésions malignes extra coliques est très élevé dans ce syndrome. Le syndrome HPNCC résulte de mutations de lignée germinale au niveau d’au moins un des cinq gènes codant les protéines, ce qui conduit à un défaut d’appariement au niveau du complexe MMR. Ce complexe (avec d’autres) assure la stabilité du génome au cours de la division cellulaire. Les mutations au niveau d’un seul des gènes MMR conduit à une perte de capacité réparatrice du complexe MMR avec pour conséquence une instabilité de l’ADN encore appelée instabilité microsatellite (MSI).

La reconnaissance des gènes MMR permet l’identification des patients atteints de syndrome HNPCC, entité encore gênée par le manque d’un phénotype non équivoque de cette maladie. Par conséquent, ceci a conduit à une définition clinique du syndrome HNPCC (c’est-à-dire porteurs ou non de tumeurs extra-coliques propres au syndrome). Par ailleurs, la surveillance des personnes à risque de HNPCC pourrait être nettement améliorée.

L’identification des gènes MMR et la compréhension de leur rôle favorisent une meilleure connaissance de la carcinogenèse du CCR. En dehors des tumeurs dues au syndrome HNPCC, plus de 20 % des CCR sporadiques sont causés par des déficiences du complexe MMR. Nous savons à présent que ces cancers se développent différemment des 80 % de cancers restants. A l’avenir, ces différences devraient influencer leur traitement.

Mots-clés

cancer colorectal héréditaire non polypoïde (HNPCC) critères d’Amsterdam instabilité microsatellite (MSI) recommandations de Bethesda syndrome de Lynch 

The impact of molecular genetics on screening of hereditary non-polyposis colorectal cancer

Summary

Hereditary non-polyposis colorectal cancer (HNPCC), also known as Lynch syndrome, is an autosomal dominant precancerous condition accounting for about 2–5 % of colorectal cancers. In addition, the risk to develop extracolonic malignancies is markedly elevated in affected persons. HNPCC is caused by germline mutations in one of at least five genes coding for proteins which build up the human mismatch repair (MMR) complex. This complex (among others) cares for stability of the genome during cell division. Mutations in one of the MMR genes lead to loss of repair capacity of the MMR complex and subsequently to a type of DNA instability which is called microsatellite instability (MSI).

Identification of the MMR genes enabled the identification of HNPCC patients, which is hampered by lack of an unambiguous phenotype of the disease. Thus, it helped also with the clinical definition of HNPCC (e. g., which extracolonic tumours belong to the syndrome and which do not). Furthermore, surveillance in persons at risk for HNPCC could be clearly improved.

Identification of the MMR genes and understanding of their function, on the other side, has led to an expansion of our knowledge about colorectal carcinogenesis. Not only tumours in HNPCC patients, but up to 20 % of sporadic colorectal cancers are caused by defects of the mismatch repair complex. We now know that these tumours develop differently from the remaining 80 % of CRC. In the future, these differences may even influence our treatment.

Key-words

Amsterdam criteria Bethesda guidelines hereditary non-polyposis colorectal cancer (HNPCC) Lynch syndrome microsatellite instability (MSI) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Bickersteth RA. Multiple polypi of the rectum occurring in a mother and child. St. Bart’s Hosp Rep 1890; 26: 299.Google Scholar
  2. 2.
    Handford H. Disseminated polypi of the large intestine becoming malignant. Trans Path Soc London 1890; 41: 133–7.Google Scholar
  3. 3.
    Lockhart-Mummery JP. Cancer and heredity. Lancet 1925; 1: 427–9.CrossRefGoogle Scholar
  4. 4.
    Warthin AS. Heredity with reference to carcinoma. Arch Intern Med 1913; 12: 546–55.Google Scholar
  5. 5.
    Lynch HT, Shaw MW, Magnuson CW, Larsen AL, Krush AJ. Hereditary factors in cancer. Study of two large midwestern kindreds. Arch Intern Med 1966; 117: 206–12.PubMedCrossRefGoogle Scholar
  6. 6.
    Lynch HT, Krush AJ. Cancer family «G» revisited: 1895–1970. Cancer 1971; 27: 1505–11.PubMedCrossRefGoogle Scholar
  7. 7.
    Lynch HT, Lynch PM. The cancer-family syndrome: a pragmatic basis for syndrome identification. Dis Colon Rectum. 1979; 22: 106–10.PubMedCrossRefGoogle Scholar
  8. 8.
    Lynch HT, Lanspa SJ, Boman BM, Smyrk T, Watson P, Lynch JF, Lynch PM, Cristofaro G, Bufo P, Tauro AV, et al. Hereditary nonpolyposis colorectal cancer — Lynch syndromes I and II. Gastroenterol Clin North Am 1988; 17: 679–712.PubMedGoogle Scholar
  9. 9.
    Lynch HT, Cristofaro G, Rozen P, Vasen H, Lynch P, Mecklin J-P, St. John J. History of the International Collaborative Group on Hereditary NonPolyposis Colorectal Cancer. Familial Cancer 2003; 2: 3–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Vasen HF, Mecklin JP, Khan PM, Lynch HT. The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC) Dis Colon Rectum 1991; 34: 424–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Peltomaki P, Aaltonen LA, Sistonen P, Pylkkanan L, Mecklin J-P, Jarvinen H, Green JS, Jass JR, Weber JL, Leach FS, Petersen GM, Hamilton SR, de la Chapelle A, Vogelstein B. Genetic mapping of a locus predisposing to human colorectal cancer. Science 1993; 260: 810–12.PubMedCrossRefGoogle Scholar
  12. 12.
    Lindblom A, Tannergard P, Werelius B, Nordenskjold M. Genetic mapping of a second locus predisposing to hereditary non-polyposis colon cancer. Nature Genet 1993; 5: 279–82.PubMedCrossRefGoogle Scholar
  13. 13.
    Aarnio M, Sankila R, Pukkala E, Salovaara R, Aaltonen LA, de la Chapelle A, Peltomaki P, Mecklin JP, Jarvinen HJ. Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer 1999; 81: 214–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Goecke T, Schulmann K, Engel C, Holinski-Feder E, Pagenstecher C, Schackert HK, Kloor M, Kunstmann E, Vogelsang H, Keller G, Dietmaier W, Mangold E, Friedrichs N, Propping P, Kruger S, Gebert J, Schmiegel W, Rueschoff J, Loeffler M, Moeslein G; German HNPCC Consortium. Genotype-phenotype comparison of German MLH1 and MSH2 mutation carriers clinically affected with Lynch syndrome: a report by the German HNPCC Consortium. J Clin Oncol 2006; 24: 4285–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Spirio L, Olschwang S, Groden J, Robertson M, Samowitz W, Joslyn G, Gelbert L, Thliveris A, Carlson M, Otterud B, et al. Alleles of the APC gene: an attenuated form of familial polyposis. Cell 1993; 75: 951–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Aretz S, Uhlhaas S, Goergens H, Siberg K, Vogel M, Pagenstecher C, Mangold E, Caspari R, Propping P, Freidl W. MUTYH-associated polyposis: 70 of 71 patients with biallelic mutations present with an attenuated or atypical phenotype. Int J Cancer 2006; 119: 807–14.PubMedCrossRefGoogle Scholar
  17. 17.
    De Jong AE, Morreau H, Van Puijenbroek M, Eilers PH, Wijnen J, Nagengast FM, Griffioen G, Cats A, Menko FH, Kleibeuker JH, Vasen HF. The role of mismatch repair gene defects in the development of adenomas in patients with HNPCC. Gastroenterology 2004; 126: 42–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Toribara NW, Sleisenger MH Screening for colorectal cancer. N Engl J Med 1995; 30: 861–7.CrossRefGoogle Scholar
  19. 19.
    Vasen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 1999; 116: 1453–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Rodriguez-Bigas MA, Boland CR, Hamilton SR, Henson DE, Jass JR, Khan PM, Lynch H, Pericho M, Smyrk T, Sobin L, Srivastava S. A National Cancer Institute Workshop on hereditary nonpolyposis colorectal cancer syndrome: meeting highlights and Bethesda guidelines. J Natl Cancer Inst 1997; 89:1758–62.PubMedCrossRefGoogle Scholar
  21. 21.
    Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Ruschoff J, Fishel R, Lindor NM, Burgart LJ, Hamelin R, Hamilton SR, Hiatt RA, Jass J, Lindblom A, Lynch HT, Peltomaki P, Ramsey SD, Rodriguez-Bigas MA, Vasen HF, Hawk ET, Barrett JC, Freedman AN, Srivastava S. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 2004; 96: 261–8.PubMedGoogle Scholar
  22. 22.
    Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, Garber J, Kane M, Kolodner R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 1993; 75: 1027–38.PubMedCrossRefGoogle Scholar
  23. 23.
    Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, Parsons R, Peltomaki P, Sistonen P, Aaltonen LA, Nystrom-Lahti M, et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 1993; 75: 1215–25.PubMedCrossRefGoogle Scholar
  24. 24.
    Knudson A. Mutation and cancer. Statistical study of retinoblastoma. Proc. Natl Acad Sci 1971; 68: 820–3.PubMedCrossRefGoogle Scholar
  25. 25.
    Aaltonen LA, Peltomaki P, Leach FS, Sistonen P, Pylkkanen L, Mecklin JP, Jarvinen H, Powell SM, Jen J, Hamilton SR, et al. Clues to the pathogenesis of familial colorectal cancer. Science 1993; 260: 812–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Umar A, Kunkel T. DNA-replication fidelity, mismatch repair and genome instability in cancer cells. Eur J Biochem 1996; 238: 297–307.PubMedCrossRefGoogle Scholar
  27. 27.
    Jiricny J. Mediating mismatch repair. Nat Genet 2000; 24: 6–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Eshleman J, Markowitz S. Mismatch repair defects in human carcinogenesis. Hum Mol Genet 1996; 5: 1489–94.PubMedGoogle Scholar
  29. 29.
    Narayan S, Roy D. Role of APC and DNA mismatch repair genes in the development of colorectal cancers. Mol Cancer 2003; 2: 41.PubMedCrossRefGoogle Scholar
  30. 30.
    Cunningham JM, Kim CY, Christensen ER, Tester DJ, Parc Y, Burgart LJ, Halling KC, McDonnell SK, Schaid DJ, Vockley CW, Kubly V, Nelson H, Michels VV, Thibodeau SN. The frequency of hereditary defective mismatch repair in a prospective series of unselected colorectal carcinomas. Am J Hum Genet 2001; 69: 780–90.PubMedCrossRefGoogle Scholar
  31. 31.
    Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL. Genetic alterations during colorectal-tumor development. N Engl J Med 1988; 319: 525–32.PubMedGoogle Scholar
  32. 32.
    Ionov Y, Peinado M, Malkhosyan S, Shibate D, Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 1993; 363: 558–61.PubMedCrossRefGoogle Scholar
  33. 33.
    Tannergard P, Liu T, Weger A, Nordenskjold M, Lindblom A. Tumorigenesis in colorectal tumors from patients with hereditary non-polyposis colorectal cancer. Hum Genet 1997; 101: 51–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Liu T, Wahlberg S, Burek E, Lindblom P, Rubio C, Lindblom A. Microsatellite instability as a predictor of a mutation in a DNA mismatch repair gene in familial colorectal cancer. Genes Chromosomes. Cancer 2000; 27: 17–25.PubMedCrossRefGoogle Scholar
  35. 35.
    Lamberti C, Kruse R, Ruelfs C, Caspari R, Wang Y, Jungck M, Mathiak M, Malayeri HR, Friedl W, Sauerbruch T, Propping P. Microsatellite instability-a useful diagnostic tool to select patients at high risk for hereditary non-polyposis colorectal cancer: a study in different groups of patients with colorectal cancer. Gut 1999; 44: 839–43.PubMedCrossRefGoogle Scholar
  36. 36.
    Mangold E, Pagenstecher C, Friedl W, Mathiak M, Buettner R, Engel C, Loeffler M, Holinski-Feder E, Müller-Koch Y, Keller G, Schackert HK, Krüger S, Goecke T, Moeslein G, Kloor M, Gebert J, Kunstmann E, Schulmann K, Rueschoff J, Propping P, and the German HNPCC Consortium. Spectrum and frequencies of mutations in MSH2 and MLH1 identified in 1,721 German families suspected of hereditary nonpolyposis colorectal cancer. Int J Cancer 2005; 116: 692–702.PubMedCrossRefGoogle Scholar
  37. 37.
    Wang Y, Friedl W, Lamberti C, Jungck M, Mathiak M, Pagenstecher C, Propping P, Mangold E. Hereditary nonpolyposis colorectal cancer: frequent occurrence of large genomic deletions in MSH2 and MLH1 genes. Int J Cancer 2003; 103: 636–41.PubMedCrossRefGoogle Scholar
  38. 38.
    Nystrom Lahti M, Wu Y, Moisio AL, Hofstra RM, Osinga J, Mecklin JP, Jarvinen HJ, Leisti J, Buys CH, de la Chapelle A, Peltomaki P. DNA mismatch repair gene mutations in 55 kindreds with verified or putative hereditary non-polyposis colorectal cancer. Hum Mol Genet 1996; 5: 763–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Wagner A, Barrows A, Wijnen JT, van der Klift H, Franken PF, Verkuijlen P, Nakagawa H, Geugien M, Jaghmohan-Changur S, Breukel C, Meijers-Heijboer H, Morreau H, et al. Molecular analysis of hereditary nonpolyposis colorectal cancer in the United States: high mutation detection rate among clinically selected families and characterization of an American founder genomic deletion of the MSH2 gene. Am J Hum Genet 2003; 72:1088–100.PubMedCrossRefGoogle Scholar
  40. 40.
    Parc Y, Boisson C, Thomas G, Olschwang S. Cancer risk in 348 French MSH2 or MLH1 gene carriers. J Med Genet 2003; 40: 208–13.PubMedCrossRefGoogle Scholar
  41. 41.
    Salovaara R, Loukola A, Kristo P, Kaariainen H, Ahtola A, Eskelinen M, Harkonen N, Julkunen R, Kangas E, Ojala S, Tulikoura J, Valkamo E, Jarvinen H, Mecklin JP, Aaltonen LA, de la Chapelle A.: Population-based molecular detection of hereditary nonpolyposis colorectal cancer. J Clin Oncol 2000; 18: 2193–200.PubMedGoogle Scholar
  42. 42.
    Percesepe A, Borghi F, Menigatti M, Losi L, Foroni M, Di Gregorio C, Rossi G, Pedroni M, Sala E, Vaccina F, Roncucci L, Benatti P, Viel A, Genuardi M, Marra G, Kristo P, Peltomaki P, Ponz de Leon M. Molecular screening for hereditary nonpolyposis colorectal cancer: A prospective, population-based study. J Clin Oncol 2001; 19: 3944–50.PubMedGoogle Scholar
  43. 43.
    Mangold E, Pagenstecher C, Leister M, Mathiak M, Rutten A, Friedl W, Propping P, Kruse R. A genotype-phenotype correlation in HNPCC: Strong predominance of msh2 mutations in 41 patients with Muir-Torre syndrome. J Med Genet 2004; 41: 567–72.PubMedCrossRefGoogle Scholar
  44. 44.
    Lin KM, Shashidharan M, Thorson AG, Ternent CA, Blatchford GJ, Christensen MA, Watson P, Lemon SJ, Franklin B, Karr B, Lynch J, Lynch HT. Cumulative incidence of colorectal and extracolonic cancers in MLH1 and MSH2 mutation carriers of hereditary nonpolyposis colorectal cancer. J Gastrointest Surg 1998; 2: 67–71.PubMedCrossRefGoogle Scholar
  45. 45.
    Vasen HF, Stormorken A, Menko FH, Nagengast FM, Kleibeuker JH, Griffioen G, Taal BG, Moller P, Wijnen JT. MSH2 mutation carriers are at higher risk of cancer than MLH1 mutation carriers: a study of hereditary nonpolyposis colorectal cancer families. J Clin Oncol 2001; 19: 4074–80.PubMedGoogle Scholar
  46. 46.
    Wijnen J, de Leeuw W, Vasen H, van der Klift H, Moller P, Stormorken A, Meijers-Heijboer H, Lindhout D, Menko F, Vossen S, Moeslein G, Tops C, Brocker-Vriends A, Wu Y, Hofstra R, Sijmons R, Cornelisse C, Morreau H, Fodde R. Familial endometrial cancer in female carriers of MSH6 germline mutations. Nat Genet 1999; 23: 142–4.PubMedCrossRefGoogle Scholar
  47. 47.
    Plaschke J, Engel C, Kruger S, Holinski-Feder E, Pagenstecher C, Mangold E, Moeslein G, Schulmann K, Gebert J, von Knebel Doeberitz M, Ruschoff J, Loeffler M, Schackert HK. Lower incidence of colorectal cancer and later age of disease onset in 27 families with pathogenic MSH6 germline mutations compared with families with MLH1 or MSH2 mutations: the German Hereditary Nonpolyposis Colorectal Cancer Consortium. J Clin Oncol 2004; 22: 4486–94.PubMedCrossRefGoogle Scholar
  48. 48.
    Jarvinen HJ, Aarnio M, Mustonen H, Aktan-Collan K, Aaltonen LA, Peltomaki P, de la Chapelle A, Mecklin JP. Controlled 15-year trial on screening for colorectal cancer in families with hereditary nonpolyposis colorectal cancer. Gastroenterology 2000; 118: 829–34.PubMedCrossRefGoogle Scholar
  49. 49.
    De Vos tot Nederveen Cappel WH, Nagengast FM, Griffioen G, Menko FH, Taal BG, Kleibeuker JH, Vasen HF. Surveillance for hereditary nonpolyposis colorectal cancer: a longterm study on 114 families. Dis Colon Rectum 2002; 45:1588–94.CrossRefGoogle Scholar
  50. 50.
    Renkonen-Sinisalo L, Sipponen P, Aarnio M, Julkunen R, Aaltonen LA, Sarna S, Jarvinen HJ, Mecklin JP. No support for endoscopic surveillance for gastric cancer in hereditary non-polyposis colorectal cancer. Scand J Gastroenterol 2002; 37: 574–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Dove-Edwin I, Boks D, Goff S, Kenter GG, Carpenter R, Vasen HF, Thomas HJ. The outcome of endometrial carcinoma surveillance by ultrasound scan in women at risk of hereditary nonpolyposis colorectal carcinoma and familial colorectal carcinoma. Cancer. 2002; 94: 1708–12.PubMedCrossRefGoogle Scholar
  52. 52.
    Jass JR. Pathogenesis of colorectal cancer. Surg Clin North Am 2002; 82: 891–904.PubMedCrossRefGoogle Scholar
  53. 53.
    Watson P, Lin KM, Rodriguez-Bigas MA, Smyrk T, Lemon S, Shashidharan M, Franklin B, Karr B, Thorson A, Lynch HT. Colorectal carcinoma survival among hereditary nonpolyposis colorectal carcinoma family members. Cancer 1998; 83: 259–66.PubMedCrossRefGoogle Scholar
  54. 54.
    Bubb VJ, Curtis LJ, Cunningham C, Dunlop MG, Carothers AD, Morris RG, White S, Bird CC, Wyllie AH. Microsatellite instability and the role of hMSH2 in sporadic colorectal cancer. Oncogene 1996; 12: 2641–9.PubMedGoogle Scholar
  55. 55.
    Wright C, Dent O, Barker M, Newland R, Chapuis P, Bokey E, Young J, Leggett B, Jass J, Macdonald G. Prognostic significance of extensive microsatellite instability in sporadic clinicopathological stage C colorectal cancer. Br J Surg 2000; 87: 1197–202.PubMedCrossRefGoogle Scholar
  56. 56.
    Garrity MM, Burgart LJ, Mahoney MR, Windschitl HE, Salim M, Wiesenfeld M, Krook JE, Michalak JC, Goldberg RM, O’Connell MJ, Furth AF, Sargent DJ, Murphy LM, Hill E, Riehle DL, Meyers CH, Witzig TE, Group. NCCT. Prognostic value of proliferation, apoptosis, defective DNA mismatch repair, and p53 overexpression in patients with resected Dukes’ B2 or C colon cancer: a North Central Cancer Treatment Group Study. J Clin Oncol 2004; 22: 1572–82.PubMedCrossRefGoogle Scholar
  57. 57.
    Popat S, Hubner R, Houlston R. Systematic review of micro-satellite instability and colorectal cancer prognosis. J Clin Oncol 2005; 23: 609–18.PubMedCrossRefGoogle Scholar
  58. 58.
    Johannsdottir J, Bergthorsson J, Gretarsdottir S, Kristjansson A, Ragnarsson G, Jonasson J, Egilsson V, Ingvarsson S. Replication error in colorectal carcinoma: association with loss of heterozygosity at mismatch repair loci and clinicopathological variables. Anticancer Res 1999; 19: 1821–6.PubMedGoogle Scholar
  59. 59.
    Curran B, Lenehan K, Mulcahy H, Tighe O, Bennett M, Kay E, O’Donoghue D, Leader M, Croke D. Replication error phenotype, clinicopathological variables, and patient outcome in Dukes’ B stage II (T3,N0,M0) colorectal cancer. GUT 2000; 46: 200–4.PubMedCrossRefGoogle Scholar
  60. 60.
    Jover R, Zapater P, Castells A, Llor X, Andreu M, Cubiella J, Pinol V, Xicola R, Bujanda L, Rene J, Clofent J, Bessa X, Morillas J, Nicolas-Perez D, Paya A, Alenda C. Mismatch repair status in the prediction of benefit from adjuvant fluorouracil chemotherapy on colorectal cancer. Gut 2005; 55: 848–55.PubMedCrossRefGoogle Scholar
  61. 61.
    Carethers JM, Smith EJ, Behling CA, Nguyen L, Tajima A, Doctolero RT, Cabrera BL, Goel A, Arnold CA, Miyai K, Boland CR. Use of 5-fluorouracil and survival in patients with microsatellite-unstable colorectal cancer. Gastroenterology 2004; 126: 394–401.PubMedCrossRefGoogle Scholar
  62. 62.
    Ribic C, Sargent D, Moore M, Thibodeau S, French A, Goldberg R, Hamilton S, Laurent-Puig P, Gryfe R, Shepherd L, Tu D, Redston M, Gallinger S. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 2003; 349: 247–57.PubMedCrossRefGoogle Scholar
  63. 63.
    Hemminki A, Mecklin JP, Jarvinen H, Aaltonen LA, Joensuu H. Microsatellite instability is a favorable prognostic indicator in patients with colorectal cancer receiving chemotherapy. Gastroenterology 2000; 119: 921–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Elsaleh H, Iacopetta B, Powell B, McCaul K, Grieu F, Grant R, Joseph D, Shannon B. Microsatellite instability is a predictive marker for survival benefit from adjuvant chemotherapy in a population-based series of stage III colorectal carcinoma. Clin Colorectal Cancer 2001; 1: 104–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Liang J, Huang K, Lai H, Lee P, Cheng Y, Hsu H, Cheng A, Hsu C, Yeh K, Wang S, Tang C, Chang K. High-frequency microsatellite instability predicts better chemosensitivity to high-dose 5-fluorouracil plus leucovorin chemotherapy for stage IV sporadic colorectal cancer after palliative bowel resection. Int J Cancer 2002; 101: 519–25.PubMedCrossRefGoogle Scholar
  66. 66.
    Brueckl W, Moesch C, Brabletz T, Koebnick C, Riedel C, Jung A, Merkel S, Schaber S, Boxberger F, Kirchner T, Hohenberger W, Hahn E, Wein A. Relationship between microsatellite instability, response and survival in palliative patients with colorectal cancer undergoing first-line chemotherapy. Anticancer Res 2003; 23: 1773–7.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • R. Caspari
    • 1
  • Ch. Lamberti
    • 2
  1. 1.Dept. of OncologyBayerwaldklinikChamGermany
  2. 2.Med. Clinic IUniversity of BonnBonnGermany

Personalised recommendations