Journal of Public Health

, 11:221

Influenza Vaccination

Article
  • 41 Downloads

Zusammenfassung

Die Grippeerkrankung stellt eine schwere Belastung für die Gesellschaft dar. Sie bewirkt ein kollektives Leiden, das sich in Schwierigkeiten des familiären Managements, in Arbeits- und Schulausfallen sowie in Beeinträchtigungen der Freiwilligenarbeit abzeichnet. Überdies sind die Kenntnisse der Grippeabwehrkräfte bisher noch nicht vollständig, auch wenn, Dank der Molekularbiologie, der Aufbau, die chemische Zusammensetzung und die Genetik des Grippevirus weitgehend bekannt sind. Die größte Schwierigkeit in der Entwicklung eines Impfstoffs wird durch die Variabilität des Grippevirus hervorgerufen. Die wichtigsten Grippeviren sind A und B, wobei der Influenza- Virus A sich in weitere Subtypen aufgeteilt, von denen H3N2 und H1N1 heute am bedeutendsten sind. Der gegenwärtige Grippeimpfstoff wird jährlich mit den Subtypen aktualisiert, die die größte Wahrscheinlichkeit aufweisen, in der Bevölkerung während der folgenden Grippesaison aufzutreten. Neue Grippeimpfstoffe werden zurzeit auf der Basis der Molekularbiologie, als rekombinierte DNA und als nackte DNA Impfstoffe entwickelt und repräsentieren die Impfstoffe, die hoffentlich wichtige Verbesserungen für die nahe Zukunft bringen werden.

Grippeschutzimpfung

Abstract

Influenza places a heavy burden on society. Distress of the community resulting from the disease translates into difficulties in family management as well as absence from work, school and social work. Moreover, there is still uncertainty in the current knowledge of anti-influenza immunity, even though, thanks to advances in molecular biology, the structure, chemistry and genetics of the virus are by now almost completely known. The greatest difficulty of the vaccine lies in the great variability of the influenza virus. The A and influenza viruses are the most important ones. The A viruses include several subtypes, H3N2 and H1N1 being presently the most important ones. The present vaccine, therefore, must be updated every year with strains that have the greatest probability of spreading in the human population during the influenza season. New influenza vaccines based on molecular biotechnology, such as DNA-recombinant or naked DNA vaccines, are currently widely studied and represent the vaccines that, hopefully, will bring about important improvements in the near future.

Keywords

Influenza vaccination 

Stichworte

Grippe Schutzimpfung 

References

  1. Ambrosch, F./Fedson, D.S. (1999). Influenza vaccination in 29 Countries: An Update to 1997. Pharmacoeconomics, 16 Suppl 2, 47–54CrossRefPubMedGoogle Scholar
  2. American Academy of Pediatrics. (2000). Red Book, 4th Italian Edition, CIS Milan.Google Scholar
  3. Ansaldi, F./D’Agaro, P./de Florentiis, D./Crovari, P./Gasparini, R./Donatelli, I./Puzzelli, S./Gregory, V./Bennett, M./Lin, Y./Hay, A./Campello, C. (in press). Molecular characterisation of influenza viruses circulating in Northern Italy during the 2001-2002 epidemic season. J Med Virol.Google Scholar
  4. Arulanandam, B.P./O’Tool, M./Metzger, D.W. (1999). Intranasal interleukin 12 is a powerful adjuvant for protective mucosal immunity. J Infect Dis, 180, 940–949.CrossRefPubMedGoogle Scholar
  5. Belshe, R.B./Gruber, W.C./Mendelman, P.M. et al. (2000). Efficacy of vaccination with live attenuated, cold-adapted, trivalent, intranasal influenza virus against a variant (A/Sidney) not contained in the vaccine. J Pediatrics, 136, 168–175.CrossRefGoogle Scholar
  6. Ben-Yedidie, T./Marcus, H./Reisner, Y. et al. (1999). Intranasal administration of peptide vaccine protects human/mouse radiation chimera from influenza infection. Int Immunol, 11, 1043–1051.CrossRefGoogle Scholar
  7. Beveridge, W.J. (1982). Influenza ultimo grande flagello. Armando-Armando Edit. Rome.Google Scholar
  8. Cao, M./Sasaki, O./Yamada, A. et al. (1992). Enhancement of the protective effect of inactivated influenza virus vaccine by cytokines. Vaccine, 10, 238–242.CrossRefPubMedGoogle Scholar
  9. CDC. (2002). Influenza and Pneumococcal Vaccination Levels Among Persons Aged τ 65 Years - United States, 2001. MMWR, 51, 1019–1024.Google Scholar
  10. CDC. (2002). Prevention and Control of Influenza: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR, 51(RR03), 1–31.Google Scholar
  11. Francis, T. (1967). quoted in Beveridge, W J. (1982). Influenza ultimo grande flagello. Armando-Armando Edit. Rome.Google Scholar
  12. Gasparini, R./Ansaldi, F./Crovari, P. et al. Molecular epidemiology of influenza during the 2001/02 epidemic season: the re-apparence of B/Victoria/2/87- lineage type viruses and their circulation in the 0-14 year age group. Submitted for publication.Google Scholar
  13. Gasparini, R./Lucioni, C./Lai, P./Maggioni, P. et al. (2002). Cost-benefit evaluation of influenza vaccination in elderly in the Italian region of Liguria. Vaccine, 20 (supp.5), B50-B54.CrossRefPubMedGoogle Scholar
  14. Gasparini, R (2002). Riflessi economici e sociali dell’Influenza. In press on Acts of: 21° Congresso Nazionale di antibioticoterapia in età pediatrica Milano, 7-8 Novembre 2002.Google Scholar
  15. Gluek, R. (2003). The history of vaccinology and developments of the last years. Workshop on: Application of molecular biology in vaccine research. Genoa, January 17th 2003.Google Scholar
  16. Hagiwara, Y./Komase, K./Chen, Z. et al. (1999). Mutants of cholera toxin as an effective and safe adjuvant for nasal influenza vaccine. Vaccine, 17, 2918–2926.CrossRefPubMedGoogle Scholar
  17. Iwasaki, A./Dela Cruz, C.S./Young, A.R. et al. (1999). Epitope-specific cytotoxic T lymphocyte induction by minigene DNA immunization. Vaccine, 17, 2081–2088.CrossRefPubMedGoogle Scholar
  18. Johansson, B.E. (1999). Immunization with influenza A virus hemagglutinin and neuraminidase produced in recombinant baculovirus results in a balanced and broadened immune response superior to conventional vaccine. Vaccine, 17, 2073–2080.CrossRefPubMedGoogle Scholar
  19. Johansson, B.E./Killburne, E.D. (1991). Programmed antigenic stimulation: Kinetics of the immune response to challenge infections of mice primed with influenza inactivated whole virus or neuroaminidase vaccine. Vaccine, 9, 330–333.CrossRefPubMedGoogle Scholar
  20. Katz, J. (1992). Evaluation of heat labile enterotoxin (LT) fromEscherichia coli as an adjuvant for oral immunization with inactivated influenza virus vaccine. Abstract Book - International Scientific Conference on “Options for the control of influenza”- II- Courchevel, France -26 September-2 October 1992, p. 56.Google Scholar
  21. Kinnunen, L./Ikonen, N./Poyry, T. et al. (1992). Evolution of influenza A (H1N1) viruses during a period of low antigenic drift in 1986-91: sequence of the HA1 domain of influenza A/Finland/158/91. Res Virol, 143, 11–16.CrossRefPubMedGoogle Scholar
  22. Kistner, O./Barrett, P.N./Mundt, W. et al. (1999). A novel mammalian cell (Vero) derived influenza virus vaccine: development, characterisation and industrial scale production. Wien Klin Wochenschr, 111, 207–214.PubMedGoogle Scholar
  23. Lunn, D.P./Soboll, G./Schram, B.R. et al. (1999). Antibody responses to DNA vaccination of horses using the influenza virus hemagglutinin gene. Vaccine, 17, 2245–2258.CrossRefPubMedGoogle Scholar
  24. Mc Elhaney, J./Meneilly, G.S./Pinkoski, M.J. et al. (1996). Vaccine-related determinants of the interleukin-2 response to influenza vaccination in healthy and elderly adults. Vaccine, 13, 6–10.Google Scholar
  25. Moldoveanu, Z./Novak, M./Huamg, W. et al. (1992). Oral immunization of mice with influenza virus in microspheres. Abstract Book - International Scientific Conference on “Options for the control of influenza”- II- Courchevel, France 26 Sep -2 Oct 1992, p. 56.Google Scholar
  26. Muszkat, M./Friedman, G./Schein, M.H. et al. (2000). Local SIgA response following administration of a novel intranasal inactivated influenza virus vaccine in community residing elderly. Vaccine, 18, 1696–1699.CrossRefPubMedGoogle Scholar
  27. Neirynck, S./Deroo, T./Saelens, X. et al. (1999). A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med, 5, 1157–1163.CrossRefPubMedGoogle Scholar
  28. Nichol, K.L./Mendelman, P.M./Mallon, K.P. et al. (1999). Effectiveness of live, attenuated intranasal influenza virus vaccine in healthy, working adults: a randomised controlled trial. JAMA, 282, 137–144.CrossRefPubMedGoogle Scholar
  29. Nichol, K.L./Goodman, M. (1999). The health and economic benefits of influenza vaccination for healthy and at-risk persons aged 65 to 74 years. Pharmacoeconomics, Suppl 1,63-71.Google Scholar
  30. Provinciali, M./DiStefano, G./Colombo, M. et al. (1994). Adjuvant effect of low-dose inteleukin-2 on antibody response to influenza virus vaccination in healthy elderly subjects. Mach Ageing Dev, 77, 75–82.CrossRefGoogle Scholar
  31. Reichert, T.A./Sugaya, N./Fedson, D.S. et al. (2001). The Japanese experience with vaccinating school children against influenza. N Engl J Med, 344, 889–896.CrossRefPubMedGoogle Scholar
  32. Roberts, A./Buonocore, L./Price, R./Forman, J./Rose, J.K. (1999). Attenuated vesicular stomatitis viruses as vaccine vectors. J Virol, 73, 3723–3732.PubMedPubMedCentralGoogle Scholar
  33. Saririan, K./Wali, A./Almeida, R.P. et al. (1993). Increased serum HLA class I molecule levels in elderly human responders to influenza vaccination. Tissue Antigens, 42, 09–13.CrossRefGoogle Scholar
  34. Scholtissek, C./Burger, H./Bachman, P.A./Hannun, C. (1983). Genetic relatedness of haemagglutinins of the HI subtype of influenza A viruses isolated from swine and birds. Virology, 129, 521–523.CrossRefPubMedGoogle Scholar
  35. Smith, W. (1935). Cultivation of the virus of influenza. Br J Exp Pathol, 16, 508–512.PubMedCentralGoogle Scholar
  36. Sugaya, N. (2002). Influenza vaccine: past, present and future. Kansenshogaku Zasshi, 76, 9–17.CrossRefPubMedGoogle Scholar
  37. Tamura, A. (1992). Nasal cholera toxin-B combined influenza vaccine. Abstract Book - International Scientific Conference on “Options for the control of influenza”- II- Courchevel, France -26 September-2 October 1992, p. 54.Google Scholar
  38. Treanor, J.J. (2002). Influenza vaccination in the modern era. Thomson professional postgraduate services.Google Scholar
  39. Treanor, J.J./Kotloff, K./Betts, R.F./Belshe, R./Newman, F./Iacuzio, D./Wittes, J./Bryant, M. (1999). Evaluation of trivalent, live, cold-adapted (CAIV-T) and inactivated (TIV) influenza vaccines in prevention of virus infection and illness following challenge of adults with wild-type influenza A (H1N1), A (H3N2), and viruses. Vaccine, 18, 899–906.CrossRefPubMedGoogle Scholar
  40. Vellucci, L./Rizzuto,E./DeStefano Caraffa, D. (2001). Prevention of Influenza in Italy: current strategies and results in terms of immunization coverage. J Prev Med Hyg, 42, 70–74.Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Health SciencesUniversity of GenoaItaly

Personalised recommendations