Applied Biochemistry and Biotechnology

, Volume 33, Issue 2, pp 145–155 | Cite as

Bioelectrosynthesis as an alternative to photosynthesis

  • Sergei D. Varfolomeyev


The CO2 reduction processes have been discussed as a way of designing an ecologically totally closed technology. An electric current and molecular hydrogen are the two related available agents that can be discussed as ecologically pure reductants. The most important products are liquid and gaseous fuels, the products of large-scale organic synthesis, monomers, and amino acids. For CO2 reduction, the necessary energy consumption and H2 costs were calculated. For complex organic molecules, amino acids for instance, the energy consumption does not make up the main portion of the costs.

The biocatalytic systems of CO2 reduction based on cryoimmobilized cells are described. Conversion of CO2 into L-lysine with electrochemical decomposition of water was effected on the laboratory scale. A general unit for diverse technological processes can be a bioelectrosynthetic Index Entries: Bioelectrosynthesis; CO2 reduction; liquid fuels; amino acids; immobilized cells; economic estimates. modulus, an electrochemical hydrogen generator coupled with a biocatalytic converter of hydrogen and oxygen. The systems for bioelectrosynthesis of motor fuels and essential amino acids have been economically estimated and characterized. The possibilities of combining the solar energy transformation and H2–CO2 conversion have been discussed.

Index Entries

Bioelectrosynthesis CO2 reduction liquid fuels amino acids immobilized cells economic estimates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Steinhart, J. S. and Steinhart, C. E. (1974),Science 184, 307–316.CrossRefGoogle Scholar
  2. 2.
    Pimentel, D., Dritschilo, W., Krummel, J., and Kutzman, J. (1975),Science 190, 754–761.Google Scholar
  3. 3.
    Pimentel, D., Hurd, L. E., Belloti, A. C., Forster, M. J., Oka, I. N., Sholes, O. D., and Whitman, R. J. (1973),Science 182, 443–449.CrossRefGoogle Scholar
  4. 4.
    Mercer, J. H. (1978),Nature 271, 321–325.CrossRefGoogle Scholar
  5. 5.
    Rotty, R. M. (1978),Resources and Energy 1, 231–249.CrossRefGoogle Scholar
  6. 6.
    Wigley, T. M. L. and Schlesinger, M. E. (1980),Nature 283, 17–21.CrossRefGoogle Scholar
  7. 7.
    Houghton, R. A. and Woodwell, G. M. (1989),Scientific Am. 260, 6–15.Google Scholar
  8. 8.
    Stuart, A. T. (1927),Industrial and Eng. Chem. 19, 1321–1324.CrossRefGoogle Scholar
  9. 9.
    Bockris, J. O’M. (1980),Energy Options, Taylor Francis, London, pp. 257–310.Google Scholar
  10. 10.
    Bockris, J. O’M. and Veziroglu, T. N. (1983),Int. J. Hydrogen Energy 8, 323–340.CrossRefGoogle Scholar
  11. 11.
    Bockris, J. O’M., Dandapani, B., Cocke, D., and Ghoroghchian, (1985),Int. J. Hydrogen Energy 10, 179–203.CrossRefGoogle Scholar
  12. 12.
    Bockris, J.O’M. and Dandapani, B. (1987),Int. J. Hydrogen Energy 12, 439–444.CrossRefGoogle Scholar
  13. 13.
    Justi, E. W., Brennecke, P. W., et al. (1987),A Solar-Hydrogen Energy System, Plenum, London, p. 334.Google Scholar
  14. 14.
    Winter, C. J. (1987),Int. J. Hydrogen Energy 12, 521–546.CrossRefGoogle Scholar
  15. 15.
    Bockris, J.O’M. and Wass, J. C. (1988),Hydrogen Energy Progress VII, Proceedings of the 7th World Hydrogen Energy Conference, Moscow, USSR, Sept. 25-29, vol.1, pp. 101–151.Google Scholar
  16. 16.
    Varfolomeyev, S. D. (1980), Konversiya energiyi biokataliticheskimi sistemami, Moscow, MGU, p. 256 (Russian).Google Scholar
  17. 17.
    Varfolomeyev, S. D., Rainina, E. I., Lozinsky, V. I., Kaluzhny, S. V., Sinitsyn, A. P., Makhlis, T. A., Bachurina, G. P., Bokova, I. G., Sklyankina, O. A., and Agafonov, E. B. (1989),Physiology of Immobilized Cells, Proceedings of International Symposium Elsevier Science Publishers, B. V. Amsterdam, pp. 325–330.Google Scholar
  18. 18.
    Pirt, S. J. (1975),Principles of Microbe–and Cell Cultivation, Blackwell Scientific Publications, Oxford, London, Edinburgh, p. 331.Google Scholar
  19. 19.
    Pechurkin, N. S. and Terskov, I. A. (1975), Analis kinetiki rosta i evolyuciyi microbnyh populyacyi, Nauka, Novosibirsk, p. 215 (Russian).Google Scholar
  20. 20.
    Varfolomeyev, S. D. and Kalyuzhni, S. V. (1990),Kineticheskiye Osnovy Mikrobiologicheskih Processov, Vysshaya Shkola, Moscow, p. 295 (Russian).Google Scholar
  21. 21.
    Mosbach, K., ed. (1987),Methods in Enzymology, vol. 135, Academic, New York, p. 350.Google Scholar
  22. 22.
    Chibata, I. and Tosa, T. (1980),Trends in Biochem. Sci. 5, 88–90.CrossRefGoogle Scholar
  23. 23.
    Woodward, J., ed. (1985),Immobilised Cells and Enzymes: A Practical Approach, IRL, Oxford-Washington, DC, p. 210.Google Scholar
  24. 24.
    Berezin, I. V., Bogdanovskaya, V. A., Varfolomeyev, S. D., Tarasevich, M. R., and Yaropolov, A. I. (1978),Dokl. Akad. Nauk SSSR 240, 615–618 (Russian).Google Scholar
  25. 25.
    Berezin, I. V., Varfolomeyev, S. D., and Lomonosov, M. V. (1980),Enzyme Eng., vol. 5, Weetall, H. and Royer, J., eds., Plenum, New York, pp. 95–100.Google Scholar
  26. 26.
    Varfolomeyev, S. D. and Berezin, I. V. (1978),J. Mol. Cat. 4, 387–400.CrossRefGoogle Scholar
  27. 27.
    Varfolomeyev, C. D. (1988),Methods in Enzymology,137, pp. 430–440.CrossRefGoogle Scholar
  28. 28.
    Yaropolov, A. I., Malovik, V. B., Varfolomeyev, S. D., and Berezin, I. V. (1979),Dokl. Akad. Nauk SSSR 249, 1399–1401 (Russian).Google Scholar
  29. 29.
    Yaropolov, A. I., Karyakin, A. A., Gogotov, I. N., Zorin, N. A., Varfolomeyev, S. D., and Berezin, I. V. (1984),Dokl. Akad. Nauk SSSR 274, 1434–1437 (Russian).Google Scholar
  30. 30.
    Tarasevich, M. R., Yaropolov, A. I., Bogdanovskaya, V. A., and Varfolomeyev, S. D. (1979),J. Electroanal. Chem. 104, 393–403.CrossRefGoogle Scholar
  31. 31.
    Varfolomeyev, S. D., Yaropolov, A. I., Berezin, I. V., Tarasevich, M. R., and Bogdanovskaya, V. A. (1977),Bioelectrochem. Bioenerg. 4, 314–326.CrossRefGoogle Scholar
  32. 32.
    Yaropolov, A. I., Suhomlin, T. K., Karyakin, A. A., Varfolomeyev, S. D., and Berezin, I. V. (1981),Dokl. Akad. Nauk SSSR 260, 1192–1195 (Russian).Google Scholar
  33. 33.
    Varfolomeyev, S. D. and Berezin, I. V. (1982),Advances in Phys. Chemistry: Current Development in Electrochemistry and Corrosion, Kolotyrkin, J. M., ed., Mir, Moscow, pp. 60–95.Google Scholar
  34. 34.
    Varfolomeyev, S. D. and Berezin, I. V. (1982),Phys. Khimiya: Sovremennye Problemy, Kolotyrkin, J. M., ed., Khimiya, Moscow, pp. 68–95 (Russian).Google Scholar

Copyright information

© Humana Press Inc. 1992

Authors and Affiliations

  • Sergei D. Varfolomeyev
    • 1
  1. 1.Department of Chemical EnzymologyFaculty of Chemistry, M. V. Lomonosou Moscow UniversityMoscowformer USSR

Personalised recommendations