Advertisement

Sugar Tech

, Volume 7, Issue 4, pp 113–118 | Cite as

Cellular target of helminthosporium sacchari Toxin in sugarcane tissue

  • Miguel Ramos-Leal
  • Alberto Ruiz
  • Rodolfo H. Maribona
  • Mayra Rodriguez
  • Eduardo Canales
  • Odelsa Ancheta
  • Orlando Coto
Article
  • 69 Downloads

Abstract

Spindles from sugarcane (Saccharum spp. hybrid) tissue were challenged using labeledHelminthosporium (Bipolaris) sacchari toxin to determine the general effect on different organelles and structures. Toxin labeling was characterized by biochemical and physiological behaviour of the fungal pathogen (dry weight, pH, refractive index, invertase and β -galactosidase activity and the biological activity of the toxin), allowing to improve the metabolic uptake of a labeled structural precursor of the toxin. A more efficient toxin labeling than previously reported was obtained. The labeled toxin was used as a tracer for determination of interactions at mitochondrial level. Binding activity reached saturation in time, confirming respiratory and ultrastructural analysis of the toxin effect.

Key Words

2,4-DNF 2,4-dinitro-phenol Helminthosporium (Bipolaris) sacchari host-selective toxin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ancheta O., Ramos M.E., de la Rosa M.C. y Rodriguez S. (1996) Metodología para el estudio de tejido vegetal por microscopía electrínica. Rev. Biotec. Aplic. vol. 13:Google Scholar
  2. Apel P. (1994) Evolution of the C4 photosynthetic pathway: a physiologist’s point of view. Photosynthetica30:495–502.Google Scholar
  3. Bednarski M. A., Scheffer R. P. andIzawa K. (1977) Effect of toxin fromHelminthosporium maydis T on respiration and associated activities in maize tissue. Physiol. Plant Path.11: 129–141.CrossRefGoogle Scholar
  4. Bergmeyer H.U. andBerndt E. (1963) Determination of D-glucose with glucose-oxidase and peroxidase. In Methods Enzymatic Analysis. Ubinheim (ed.) p.123–130. Acad. Press, Verlag, NYGoogle Scholar
  5. Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal. Biochem.72:248–254CrossRefGoogle Scholar
  6. Braun C.J., Siedow J.N. andLeving C. (1990) Fungal toxins bind to the URF 13 protein in maize mitochondria andE. coli. Plant Cell2: 153–161.CrossRefGoogle Scholar
  7. Canales E., Cornide M.T., Coto O. (2004) Mapa de ligamiento de una variedad cubana de caña de azúcar mediante marcadores RFLP. Conventión Trópico- 2do Cong. Agricult. Tropical, INIFAT, La Habana, Cuba.Google Scholar
  8. Cornide M.T., Canales E., Coto O. and Vallina J. (2004) Determination of molecular markers associated with quantitative- trait loci in a non-replicated progeny of sugarcane. Cultivos Tropicales.Google Scholar
  9. Da Silva J.A.G., Sorrells M.E., Burnquist W.L. andTaksley S J. (1993) RFLP linkage map of Saccharum spontaneum. Genome36: 782–791.CrossRefGoogle Scholar
  10. Daugrois J.H., Grivet L., Roques D., Hoarau J.Y., Lombard H., Glaszmann J.C. andD’Hont A. (1996) A putative major gene for rust resistance linked with an RFLP marker in sugarcane cultivar R570. Theor. Appl. Genet.92: 1059–1064.CrossRefGoogle Scholar
  11. Duvick J.P., Dale J.M., Kratky Z., Macko V., Acklin W. andArigoni D. (1984) Biological activity of the isomeric forms ofH. sacchari toxin and homologs produced in culture. Plant Physiol.74:117–122.CrossRefGoogle Scholar
  12. Knogge W. (1996) Fungal infection of plants. Plant Cell8:1711- 1722.CrossRefGoogle Scholar
  13. Lesney J., Livingston R.S. andScheffer R.P. (1983) Effect of toxin fromH. sacchari in non-green tissues and re-examination of toxin binding. Phytopath.72: 844–849.CrossRefGoogle Scholar
  14. Livingston R.S. andScheffer R.P. (1984) Selective toxins and analogs produced byH. sacchari toxin production, characterization and biological activity. Plant Physiol.76:96–102.CrossRefGoogle Scholar
  15. Palloix A., Daubeze P.M. andPochard E. (1988) Time sequences of root infection and resistance expression in an artificial inoculation method of pepper withPhytophthora capsici. J. Phytopath.123:12–24.CrossRefGoogle Scholar
  16. Pantastico E.B., Soule J. andGrierson W. (1968) Post-harvest physiology and storage of fruits. Chilling injury. Proc. Trop. Region Amer. Soc. Hort. Sci.51: 697–700.Google Scholar
  17. Ramos-Leal M., Ruiz A., Sandoval I. andMaribona R.H. (1989) Biochemical evaluation of fungal disease resistance in sugarcane. Plant Breed.102: 45–50.CrossRefGoogle Scholar
  18. Ramos-Leal M., Echemendia A., Cornide M.T., Canales E., Coto O., Vallina J., Veitia A. andLeonard H. (1999) Estimation of uncontrolled selfing and RFLP dosage in a sugarcane commercial progeny. Internet. Symp. on Plant Genetic Engineering. CIGB, La Habana, Cuba: 51.Google Scholar
  19. Ruiz A., Ramos-Leal M., Rodriguez M. andMaribona R.H. (1992) A molecular mechanism for somaclonal resistance to eyespot disease of sugarcane. In: Advances in Modern Biotechnology. Gavilondo, Luaces, Moya, Pedraza, Castro & Castro (eds.) vol.1:14.14, Centra de Ingen. Genet, y Biotecnol. (CIGB), La Habana.Google Scholar
  20. Sambrook J.,Fritsch E.P. andManiatis T. (1989) Assay for ß- galactosidase in extracts of mammalian cells. In: Molecular Cloning: a laboratory manual. 2nd ed. Cold Spring Harbour Laboratory vol.3:16.66.Google Scholar
  21. Satoh Y., Nagai M., Mikami T. andKinoshita T. (1993) The use of mitochondrial DNA polymorphism in the classification of individual onion plants by cytoplasmic genotypes. Theor. Appl. Genet.86:345–348.PubMedGoogle Scholar
  22. Selman-Houssein G. andM. Ramos-Leal (2005) Biotechnological and molecular approaches in genetic improvement of sugarcane. In: Sugarcane production management and agro-industrial imperatives. Solomon S., Grewal S., Li Yang-Rui, Magarey R.C. and Rao G.P. (eds.): International Book Distributing Co., IndiaGoogle Scholar
  23. Strobel G. (1973) The helminthosporoside binding protein of sugarcane. J. Biol. Chem.248:1321–1328.PubMedGoogle Scholar
  24. Strobel G. (1979) The relationship between membrane ATPase activity in sugarcane and heat- induced resistance to Helminthosporoside. Biochem. et Biophys. Acta554:460–468.CrossRefGoogle Scholar
  25. Strobel G. andHess W. (1974) Evidence for the presence of the toxin binding on the plasma membrane of sugarcane cells. Proc. Nat. Acad. Sci. USA71:1413–1417.CrossRefGoogle Scholar
  26. Walton J.D. (1996) Host-selective toxins: agents of compatibility. Plant Cell8:1723–1733.CrossRefGoogle Scholar
  27. Walton J.D. (1997) Biochemical Plant Pathology. In Plant Biochemistry. Acad. Press Ltd. Chapter 13.Google Scholar
  28. Xiao J., Tsuge T., Doke N., Nakatsuka S., Tsuda M. andNishimura S. (1991) Rice specific toxins produced byBipolaris zeicola race 3; evidence for role as pathogenicity factors for rice and maize plants. Physiol. Molec. Plant Pathol.38: 67–82.CrossRefGoogle Scholar

Copyright information

© Society for Sugar Research & Promotion 1999

Authors and Affiliations

  • Miguel Ramos-Leal
    • 1
  • Alberto Ruiz
    • 2
  • Rodolfo H. Maribona
  • Mayra Rodriguez
    • 3
  • Eduardo Canales
    • 3
  • Odelsa Ancheta
    • 4
  • Orlando Coto
    • 5
  1. 1.Departamento de Microbiología, Facultad de BiologíaUniversidad de La HabanaCiudad de La HabanaCuba
  2. 2.Vice-Ministerio de DesarrolloMinisterio de la Agricultura de Cuba (Minagri)Cuba
  3. 3.Centro de Ingeniería Gené tica y Biotecnologia (CIGB)Ciudad de La HabanaCuba
  4. 4.Dpto. Microscopia ElectrónicaCentro Nacional de Investigaciones Científicas (CNIC)Ciudad de La HabanaCuba
  5. 5.Instituto de lnvestigaciones en Citricultura Tropical (I1CT) Ciudad de La HabanaCuba

Personalised recommendations