Skip to main content
Log in

Microalgal removal of CO2 from flue gases: Changes in medium pH and flue gas composition do not appear to affect the photochemical yield of microalgal cultures

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Our research objectives are to determine under what conditions microalgal-based CO2 capture from flue gases is economically attractive. Specifically, our objective here was to select microalgae that are temperature, pH and flue gas tolerant. Microalgae were grown under five different temperatures, three different pH and five different flue gas mixtures besides 100% CO2 (gas concentrations that the cells were exposed to ranged 5.7–100% CO2, 0–3504 ppm SO2, 0–328 ppm NO, and 0–126 ppm NO2). Our results indicate that the microalgal strains tested exhibit a substantial ability to withstand a wide range of temperature (54 strains tested), pH (20 strains tested) and flue gas composition (24 strains tested) likely to be encountered in cultures used for carbon sequestration from smoke stack gases. Our results indicate that microalgal photosynthesis is a limited but viable strategy for CO2 capture from flue gases produced by stationary combustion sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kadam, K. L. (2002) Environmental implications of power generation via coal-microalgae cofiring.Energy 27: 905–922.

    Article  CAS  Google Scholar 

  2. IEA (International Energy Agency) (1998) Carbon dioxide capture from power stations. Available at http://www.ieagreen.org.uk.

  3. Borowitzka, M. A. (1995) Microalgae as sources of pharmaceuticals and other biologically active compounds.J. Appl. Phycol. 7: 3–15.

    Article  CAS  Google Scholar 

  4. Oswald, W. J. and C. G. Golueke (1968) Large scale production of algae. pp. 271–305. In: R. I. Mateles and S. R. Tanebaum (eds.).Single Cell Protein. MIT. Press, Cambridge, USA.

    Google Scholar 

  5. Kadam, K. L. (1997) Power plant flue gas as a source of CO2 for microalgae cultivation: Economic impact of different process options.Energy Conv. Manag. 38: S505-S510.

    Article  CAS  Google Scholar 

  6. Sheehan, J., T. Dunahay, J. Benemann, and P. Roessler (1998)A Look Back at the U.S. Department of Energy’s Aquatic Species Program—Biodiesel from Algae. National Renewable Energy Laboratory, Golden, CO, NREL/TP-580-24190.

  7. Hanagata, N., T. Takeuchi, Y. Fukuju, D. J. Barnes, and I. Karube (1992) Tolerance of microalgae to high CO2 and high temperature.Phytochem. 31: 3345–3348.

    Article  CAS  Google Scholar 

  8. Yun, Y. S., S. B. Lee, J. M. Park, C. I. Lee, and J. W. Yang (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients.J. Chem. Tech. Biotechnol. 69: 451–455.

    Article  CAS  Google Scholar 

  9. Lee, J. S., D. K. Kim, J. P. Lee, S. C. Park, J. H. Koh, H. S. Cho, and S. W. Kim (2002) Effects of SO2 and NO on growth ofChlorella sp. KR-1.Biores. Biotechnol. 82: 1–4.

    Article  CAS  Google Scholar 

  10. Negoro, M., N. Shioji, K. Miyamoto, and Y. Miura (1991) Growth of microalgae in high CO2 gas and effects of SOx and NOx.Appl. Biochem. Biotechnol. 28–29: 877–886.

    Article  Google Scholar 

  11. Murakami, M. and M. Ikenouchi (1997) The biological CO2 fixation and utilization by RITE (2) Screening and breeding of microalgae with high capability in fixing CO2.Energy Conv. Manag. 38: S493-S497.

    Article  CAS  Google Scholar 

  12. Chang, E. H. and S. S. Yang (2003) Microalgae for biofixation of carbon dioxide.Bot. Bull. Acad. Sin. 44: 43–52.

    CAS  Google Scholar 

  13. Maeda, K., M. Owada, N. Kimura, K. Omata, and I. Karube (1995) CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae.Energy Conv. Manag. 36: 717–720.

    Article  CAS  Google Scholar 

  14. Sung, K. D., J. S. Lee, C. S. Shin, S. C. Park, and M. J. Choi (1999) CO2 fixation byChlorella sp. KR-1 and its cultural characteristics.Biores. Biotechnol. 68: 269–273.

    Article  CAS  Google Scholar 

  15. Bischoff, H. W. and H. C. Bold (1963) Phycological studies. IV. Some algae from enchanted rock and related algal species. The Univ. of Texas. Publ. 6318. 95 pp.

  16. Schreiber, U., U. Schliwa, and W. Bilger (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer.Photosyn. Res. 10: 51–62.

    Article  CAS  Google Scholar 

  17. Maxwell, K. and G. N. Johnson (2000) Chlorophyll fluorescence—a practical guide.J. Exp. Bot. 51: 659–668.

    Article  CAS  Google Scholar 

  18. Lee, J. N., J. S. Lee, C. S. Shin, S. C. Park, and S. W. Kim (2000) Methods to enhance tolerances ofChlorella KR-1 to toxic compounds in flue gas.Appl. Biochem. Biotechnol. 84–86: 329–342.

    Article  Google Scholar 

  19. Brown, L. W. (1996) Uptake of carbon dioxide from flue gas by microalgae.Energy Conv. Manag. 37: 1363–1367.

    Article  CAS  Google Scholar 

  20. Nagase, H., K. I. Yoshihara, K. Eguchi, Y. Yokota, R. Matsui, K. Hirata, and K. Miyamoto (1997) Characteristics of biological NOx removal from flue gas in aDunaliella tertiolecta culture system.J. Ferment. Bioeng. 83: 461–465.

    Article  CAS  Google Scholar 

  21. Nagase, H., K. I. Yoshihara, K. Eguchi, Y. Okamoto, S. Murasaki, R. Yamashita, K. Hirata, and K. Miyamoto (2001) Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae.Biochem. Eng. J. 7: 241–246.

    Article  CAS  Google Scholar 

  22. Goldman, J. C. (1979) Outdoor algal mass cultures: I. Applications.Water Res. 13: 1–18.

    Article  Google Scholar 

  23. Masojídek, J., G. Torzillo, M. Kobližek, J. Kopeck, P. Bernardini, A. Sacchi, and J. Komenda (1999) Photoadaptation of two members of the Chlorophyta (Scenedesmus andChlorella) in laboratory and outdoor cultures: Changes in chlorophyll fluorescence quenching and the xanthophyll cycle.Planta 209: 126–135.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Olaizola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olaizola, M. Microalgal removal of CO2 from flue gases: Changes in medium pH and flue gas composition do not appear to affect the photochemical yield of microalgal cultures. Biotechnol. Bioprocess Eng. 8, 360–367 (2003). https://doi.org/10.1007/BF02949280

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02949280

Keywords

Navigation