Advertisement

Biotechnology and Bioprocess Engineering

, Volume 8, Issue 6, pp 349–353 | Cite as

Growth characteristics of ultrahigh-density microalgal cultures

  • Amos Richmond
Article

Abstract

The physiological characteristics of cultures of very high cell mass (e.g. 10 g cell mass/L), termed “ultrahigh cell density cultures” is reviewed. A close relationship was found between the length of the optical path (OP) in flat-plate reactors and the optimal cell density of the culture as well as its areal (g m−2 day−1) productivity. Cell-growth inhibition (GI) unfolds, as culture density surpasses a certain threshold. If it is constantly relieved, a 1.0 cm OP reactor could produceca. 50% more than reactors with longer OP,e.g. 5 or 10 cm. This unique effect, discovered by Hu et al. [3], is explained in terms of the relationships between the frequency of the light-dark cycle (L-D cycle), cells undergo in their travel between the light and dark volumes in the reactor, and the turnover time of the photosynthetic center (PC). In long OP reactors (5 cm and above) the L-D cycle time may be orders of magnitude longer than the PC turnover time, resulting in a light regime in which the cells are exposed along the L-D cycle, to long, wasteful dark periods. In contrast, in reactors with an OP ofca. 1.0 cm, the L-D cycle frequency approaches the PC turnover time resulting in a significant reduction of the wasteful dark exposure time, thereby inducing a surge in photosynthetic efficiency. Presently, the major difficulty in mass cultivation of ultrahigh-density culture (UHDC) concerns cell grwoth inhibition in the culture, the exact nature of which is awaiting detailed investigation.

Keywords

ultrahigh density culture flat plate reactor optical-path growth inhibition L-D cycle productivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Javanmardian, M. and B. O. Palsson (1991) High-density photoautrotrophic algal cultures: Design, construction, and operation of a novel photobioreactor system.Biotechnol. Bioeng. 38: 1182–1189.CrossRefGoogle Scholar
  2. [2]
    Hu, Q., Y. Zarmi, and A. Richmond (1998) Combined effects of light intensity, light-path, and culture density on output rate ofSpirulina platensis (Cyanobacteria).Eur. J. Phycol. 33: 165–171CrossRefGoogle Scholar
  3. [3]
    Hu, Q., H. Guterman, and A. Richmond (1996) A flat modular photobioreactor (FIMP) for outdoor mass cultivation of photoautotrophs.Biotechnol. Bioeng. 51: 51–60.CrossRefGoogle Scholar
  4. [4]
    Richmond, A., C-W. Zhang, and Y. Zarmi (2003) Efficient use of strong light for high photosynthetic productivity: Interrelationships between the optical path, the optimal population density and cell-growth inhibition. In:Biomolecular Engineering, Special issue of the Conference of the European Society for Marine Biotechnology “Marine Biotechnology: Basics and applications”. 20: 229–236.Google Scholar
  5. [5]
    Janssen, M., J. Tramper, L. R. Mur, and R. H. Wijffels (2003) Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects.Biotechnol. Bioeng. 81: 193–210.CrossRefGoogle Scholar
  6. [6]
    Dubinsky, Z., P. G. Falkowsky, and K. Wyman (1986) Light harvesting and utilization by phytoplankton.Plant Cell Physiol. 27: 1335–1349.Google Scholar
  7. [7]
    Dubinsky, Z. (1992) The functional and optical absorption cross-sections of phytoplankton photosynthesis. pp. 31. In:Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York, USA.Google Scholar
  8. [8]
    Zarmi, Y: (2003) Personal communication.Google Scholar
  9. [9]
    Hu, O., H. Guterman, and A. Richmond (1996b) Physiological characteristics ofSpirulina platensis cultured in ultra-high cell densities.J. Phycol. 32: 1066–1073CrossRefGoogle Scholar
  10. [10]
    Sukenik, A., R. S. Levy, Y. Levy, P. G. Falkowsky, and Z. Dubinsky (1991) Optimizing algal biomass production in an outdoor pond: A simulation model.J. Appl. Phycol. 3: 191–201.CrossRefGoogle Scholar
  11. [11]
    Richmond, A. (2003)Handbook of Microalgae Culture: biotechnology and Applied Phycology. p. 575. Blackwell Books, Oxford, UK.CrossRefGoogle Scholar
  12. [12]
    Vonshak, A. and R. Guy (1992) Photoadaptation, photoinhibition and productivity in the blue-green alga.Spirulina platensis grown outdoors.Plant Cell Environ. 15: 613–616.CrossRefGoogle Scholar
  13. [13]
    Torzillo, G., A. J. Komend, J. Kopecky, C. Faraloni, and J. Masojidek (2003) Photoinhibitory stress induced by high oxygen and low temperature in outdoor cultures ofArthrospira platensis grown in closed photobioreactors. p. 31.Abstracts of Third European Phycological Congress. July 21–26. Belfast, Ireland.Google Scholar
  14. [14]
    Märkl, H. (1980) Modeling of algal production systems. In: G. Shelef, and C. J. Soeder (eds.),Algal Biomass. Elsevier/North-Holland, Amsterdam, The Netherlands.Google Scholar
  15. [15]
    Richmond, A. and J. U. Grobbelaar (1986) Factors affecting the output rate ofSpirulina platensis with reference to mass cultivation.Biomass 10: 253–264.CrossRefGoogle Scholar
  16. [16]
    Barbosa, M. J. (2003)Microalgal Photobioreactors: Scaleup and Optimization. Ph.D. Thesis. Wageningen University, Wageningen, The Netherlands.Google Scholar
  17. [17]
    Barbosa, M. J., M. Albrecht, and R. H. Wijffels (2003) Hydrodynamic stress and lethal events in sparged microalgae cultures.Biotechnol. Bioeng. 83: 112–120.CrossRefGoogle Scholar
  18. [18]
    Miron, A. S., A. C. Gomez, F. G. Camacho, E. M. Grima, and M. Y. Chisti (1999) Comparative evaluation of compact photobioreactors for large-scale mono-culture of microalgae.J. Biotechnol. 70: 249–256.CrossRefGoogle Scholar
  19. [19]
    Camacho, F. G., A. C. Gomez, T. M. Sobcruk, and E. M. Grima (2000) Effects of mechanical and hydrodynamic stress in agitated, sparged cultures ofPorphyridium cruentum.Proc. Biochem. 35: 1045–1050.CrossRefGoogle Scholar
  20. [20]
    Pratt, R. (1942) Studies onChlorella vulgaris: V. Some of the properties of the growth inhibitors formed byChlorella cells.Amer. J. Bot. 29: 142–148.CrossRefGoogle Scholar
  21. [21]
    Leving, T. (1945) Some culture experiments with marine plankton diatoms.Med. Oceanogr. Inst. Gotenborg 3: 12.Google Scholar
  22. [22]
    Von Dennffer, D. (1948) Übereinen Wachstum-Hemmstoff in älternden Diatomeenkulturen.Biol. Zentralbl. 67: 7–13.Google Scholar
  23. [23]
    Lefevre, M. (1964) Extracellular products of algae. pp 337–367. In: D. F. Jackson (ed.),Algae and Man. Plenum Press, New York, USA.Google Scholar
  24. [24]
    Fogg, G. E. (1971) Extracellular products of algae in fresh water.Arch. Hydrobiol. 5: 1–25.Google Scholar
  25. [25]
    Harris, D. O. (1975) Antibiotics production by the green alga,Pandorina morum. pp. 106–111. In: L. Brezonik and J. L. Fox (eds.),Water Quality Management through Biological Control. University of Florida, Gainesville, USA.Google Scholar
  26. [26]
    Keeting, K. I. (1978) Blue-green algal inhibition of diatom growth: Transition from mesotrophic to eutrophic community structure.Science 199: 971–973.CrossRefGoogle Scholar
  27. [27]
    Pratt, R. and J. Fong (1940) Influence of the size of inoculum on the growth ofChlorella vulgaris in freshly prepared culture medium.Amer. J. Bot. 27: 52–56.CrossRefGoogle Scholar
  28. [28]
    Curl, H. and G. C. McLeod (1961) The physiological ecology of a marine diatomSkeletonema costatum. (Grev.) Cleve. J. Mar. Res. 19: 70–88.Google Scholar
  29. [29]
    McCracken, M. D., R. E. Middaugh, and R. S. Middaugh (1980) A chemical characterization on an algal inhibitor obtained fromChlamydomonas.Hydrobiol. 70: 271–276CrossRefGoogle Scholar
  30. [30]
    Imada, N., K. Kobayashi, K. Tahara, and Y. Oshima (1991) Production of an autoinhibitor bySkeletonema costatum and its effect on the growth of other phytoplankton.Nippon Suisan Gakkaishi 57: 2285–2290.Google Scholar
  31. [31]
    Imada, N., K. Kobayashi, K. Isomura, H. Saito, S. Kimura, K. Tahara, and Y. Oshima (1992) Isolation and identification of an autoinhibitor produced bySkeletonema costatum.Nippon Suisan Gakkaishi 58: 1687–1692.Google Scholar
  32. [32]
    Mandalam, R. K. and B. O. Palsson (1995)Chlorella vulgaris (Chlorellaceae) does not secrete autoinhibitors at high cell densities.Amer. J. Bot. 82: 995–963.CrossRefGoogle Scholar
  33. [33]
    Mandalam, R. K. and B. O. Palsson (1998) Elemental balancing of biomass and medium composition enhances grwoth capacity in high-densityChlorella vulgaris cultures.Biotechnol. Bioeng. 59: 605–611.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2003

Authors and Affiliations

  1. 1.The Jacob Blaustein Institute for Desert ResearchBen-Gurion University of the NegevIsrael

Personalised recommendations