Journal of Computer Science and Technology

, Volume 19, Issue 5, pp 607–617 | Cite as

Multiresolution free form object modeling with point sampled geometry

  • Yong-Jin LiuEmail author
  • Kai Tang
  • Matthew Ming-Fai Yuen


In this paper an efficient framework for the creation of 3D digital content with point sampled geometry is proposed. A new hierarchy of shape representations with three levels is adopted in this framework. Based on this new hierarchical shape representation, the proposed framework offers concise integration of various volumetric- and surface-based modeling techniques, such as Boolean operation, offset, blending, free-form deformation, parameterization and texture mapping, and thus simplifies the complete modeling process. Previously to achieve the same goal, several separated algorithms had to be used independently with inconsistent volumetric and surface representations of the free-form object. Both graphics and industrial applications are presented to demonstrate the effectiveness and efficiency of the proposed framework.


object hierarchy and geometric transformation feature representation three-dimensional graphics and realism system and information processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Farin G. Curves and Surfaces for CAGD: A Practical Guide. 5th ed., San Francisco, CA, Morgan Kaufmann, 2002.Google Scholar
  2. [2]
    Liu Y-J. Complex shape modeling with point sampled geometry [Dissertation]. Hong Kong University of Science and Technology, 2003.Google Scholar
  3. [3]
    Pasko A, Adzhiev V, Sourin A, Savchenko V. Functional representation in geometric modeling: Concepts, implementation, and application.Visual Computer, 1995, 11(8): 429–446.CrossRefGoogle Scholar
  4. [4]
    Amenta N, Bern M, Kamvysselis M. A new Voronoibased surface reconstruction algorithm. InProc. SIGGRAPH'98, ACM SIGGRAPH, 1998, pp.415–421.Google Scholar
  5. [5]
    Bardinet E, Cohen L, Ayache N. A parametric deformable model to fit unstructured 3D data.Computer Vision & Image Understanding, 1998, 71(1): 39–54.CrossRefGoogle Scholar
  6. [6]
    Carr J, Beatson R, Cherrie J, Mitchell T, Fright W, McCallum B, Evans T. Reconstruction and representation of 3D objects with radial basis functions. InProc. SIGGRAPH'01, ACM SIGGRAPH, 2001, pp.67–76.Google Scholar
  7. [7]
    Alexa M, Behr J, Cohen-Or D, Fleishman S, Levin D, Silva C T. Computing and rendering point set surfaces.IEEE Trans. Visualization and Computer Graphics, 2003, 9(1): 3–15.CrossRefGoogle Scholar
  8. [8]
    Osher S, Fedkiw R. Level Set Methods and Dynamic Implicit Surface. New York, Hong Kong: Springer-Verlag, 2003.Google Scholar
  9. [9]
    Moller T, Haines E. Real-Time Rendering. 2nd ed., Natick, Mass.: AK Peters, 2002.Google Scholar
  10. [10]
    Hoppe H. Progressive meshes. InProc. SIGGRAPH'96, ACM SIGGRAPH, New Orleans, Louisiana, USA, 1996. pp.99–108.Google Scholar
  11. [11]
    Eck M, DeRose T, Duchamp T, Hoppe H, Lounsbery M, Stuetzle W. Multiresolution analysis of arbitrary meshes. InProc. SIGGRAPH'95, ACM SIGGRAPH, Los Angeles, CA, USA, 1995, pp.173–182.Google Scholar
  12. [12]
    Foley J, van Dam A, Feiner S, Hughes J. Computer Graphics: Principles and Practice. 2nd ed., Reading, Mass.: Addison-Wesley, 1996.zbMATHGoogle Scholar
  13. [13]
    Pfister H, Zwicker J, van Barr J, Gross M H. Surfels: Surface elements as rendering primitives. InProc. SIGGRAPH'00, ACM SIGGRAPH, New Orleans, Louisiana, USA, 2000, pp.335–342.Google Scholar
  14. [14]
    Liu Y J, Yuen M M F. Optimized triangle mesh reconstruction from unstructured points.Visual Computer, 2003, 19(1): 23–37.CrossRefGoogle Scholar
  15. [15]
    Zorin D, Schroder P. Subdivision for modeling and animation. SIGGRAPH Course Notes, 2000.Google Scholar
  16. [16]
    de Berg M, van Kreveld M, Overmars M, Schwarzkopf O. Computational Geometry: Algorithm and Applications. Springer-Verlag, 1997.Google Scholar
  17. [17]
    Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W. Surface reconstruction from unorganized points. InProc. SIGGRAPH'92, ACM SIGGRAPH, Chicago, Illinois, USA, 1992, pp.71–78.Google Scholar
  18. [18]
    Cormen T, Leiserson C, Rivest R. Introduction to Algorithms. 2nd ed., Cambridge, Mass.: MIT Press; Boston: McGraw-Hill, 2001.zbMATHGoogle Scholar
  19. [19]
    Liu Y J, Yuen M M F, Tang K. Manifold-guaranteed out-of-core simplification of large meshes with controlled topological type.Visual Computer, 2003, 19(7–8): 565–580.Google Scholar
  20. [20]
    Velho L, Gomes J, Henrique L. Implicit Object in Computer Graphics. New York, Hong Kong: Springer-Verlag, 2002.Google Scholar
  21. [21]
    Liu Y J, Yuen M M F, Xiong S. A feature based approach for individualized human head modeling.Visual Computer, 2002, 18(5–6): 368–381.CrossRefGoogle Scholar
  22. [22]
    Guskov I, Sweldens W, Schroder P. Multiresolution signal processing for meshes. InProc. SIGGRAPH'99, ACM SIGGRAPH, Los Angeles, CA, USA, 1999, pp.325–334.Google Scholar

Copyright information

© Science Press, Beijing China and Allerton Press Inc., Beijing China and Allerton Press Inc. 2004

Authors and Affiliations

  • Yong-Jin Liu
    • 1
    Email author
  • Kai Tang
    • 2
  • Matthew Ming-Fai Yuen
    • 2
  1. 1.Department of Industrial Engineering and Engineering ManagementHong Kong University of Science and TechnologyHong Kong, P. R. China
  2. 2.Department of Mechanical EngineeringHong Kong University of Science and TechnologyHong Kong, P. R. China

Personalised recommendations