Advertisement

KSME International Journal

, Volume 12, Issue 6, pp 1200–1205 | Cite as

Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160

  • Jeongyoung Park
  • Kiyoung Kwon
  • Haecheon ChoiEmail author
Article

Abstract

Flow past a circular cylinder at Reynolds numbers up to 160 is simulated using high resolution calculations. Flow quantities at the cylinder surface are obtained and compared with those from the existing experimental and numerical studies. The present study reports the detailed information of flow quantities on the cylinder surface at low Reynolds numbers.

Key Words

Vortex Shedding Circular Cylinder Statistics on the Cylinder Surface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braza, M., Chassaing, P. and Ha Minh, H., 1986, “Numerical Study and Physical Analysis of the Pressure and Velocity Fields in the Near Wake of a Circular Cylinder,”J. Fluid Mech., Vol. 165, pp. 79–130.zbMATHCrossRefMathSciNetGoogle Scholar
  2. Choi, H., Moin, P. and Kim, J., 1992, “Turbulent Drag Reduction: Studies of Feedback Control & Flow over Riblets,” Report No. TF-55. Department of Mechanical Engineering, Stanford University Stanford, CA.Google Scholar
  3. Choi, H., Moin, P. and Kim, J., 1993, “Direct Numerical Simulation of Turbulent Flow over Riblets,”J. Fluid Mech. Vol. 255, pp. 503–539.zbMATHCrossRefMathSciNetGoogle Scholar
  4. Choi, H. and Moin, P., 1994 “Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow,”J. Comp. Phys. Vol. 113, pp. 1–4.zbMATHCrossRefGoogle Scholar
  5. Coutanceau, M. and Bouard, R., 1977, “Experimental Determination of the Main Features of the Viscous Flow in the Wake of a Circular Cylinder in Uniform Translation, Part 1. Steady Flow,”J. Fluid Mech., Vol. 79, pp. 231–256.CrossRefGoogle Scholar
  6. Dennis, S. C. R. and Chang, G., 1970, “Numerical Solutions for Steady Flow Past a Circular Cylinder at Reynolds Numbers up to 100,”J. Fluid Mech. Vol. 42, pp. 471–489.zbMATHCrossRefGoogle Scholar
  7. Fornberg, B., 1980, “A Numerical Study of Steady Viscous Flow past a Circular Cylinder,”J. Fluid Mech., Vol. 98, pp. 819–855.zbMATHCrossRefGoogle Scholar
  8. Grove, A. S., Shair, F. H., Petersen, E. E. and Acrivos, A., 1964, “An Experimental Investigation of the Steady Separated Flow past a Circular Cylinder,”J. Fluid Mech. Vol. 19, pp. 60–80.zbMATHCrossRefGoogle Scholar
  9. Hahn, S., and Choi, H., 1997, “Unsteady Simulation of Jets in a Cross Flow,”J. Comp. Phys., Vol. 134, pp. 342–356.zbMATHCrossRefGoogle Scholar
  10. Henderson, R. D., 1995, “Details of the Drag Curve near the Onset of Vortex Shedding using High-resolution Computer Simulation,”Phys. Fluids, Vol. 7 pp. 2102–2104.CrossRefGoogle Scholar
  11. Mansy, H., Yang, P. and Williams D. R., 1994, “Quantitative Measurements of Three-dimensional Structures in the Wake of a Circular Cylinder,”J. Fluid Mech Vol. 270, pp. 277–296.CrossRefGoogle Scholar
  12. Nishioka, M. and Sato, H., 1974, “Measurements of Velocity Distributions in the Wake of a Circular Cylinder at Low Reynolds Numbers,”J. Fluid Mech. Vol. 65, pp. 97–112.CrossRefGoogle Scholar
  13. Nishioka, M. and Sato, H., 1978, “Mechanism of Determination of the Shedding Frequency of Vortices behind a Cylinder at Low Reynolds Numbers,”J. Fluid Mech., Vol. 89, pp. 49–60.CrossRefGoogle Scholar
  14. Norberg, C., 1993, “Pressure Forces on a Circular Cylinder in Cross Flow,” InProc. IUTAM Symp. Bluff-Body Wakes, Dynamics and Instabilities, 7–11 September 1992, Göttingen, 275. Springer.Google Scholar
  15. Norberg, C., 1994, “An Experimental Investigation of the Flow around a Circular Cylinder: Influence of Aspect Ratio,”J. Fluid Mech., Vol. 258, pp. 287–316.CrossRefGoogle Scholar
  16. Oertel, H., 1990, “Wakes behind Blunt Bodies,”Annu. Rev. Fluid Mech., Vol. 22, pp. 539–564.CrossRefMathSciNetGoogle Scholar
  17. Park, D. S., Ladd, D. M. and Hendricks, E. W., 1994, “Feedback Control of von Karman Vortex Shedding behind a Circular Cylinder at Low Reynolds Number,”Phys. Fluids, Vol. 6, pp. 2390–2405.zbMATHCrossRefGoogle Scholar
  18. Pauley, L. L. Moin, P. and Reynolds, W. C. 1990, “The Structure of Two-dimensional Separation,”J. Fluid Mech., Vol. 220, pp. 397–411.CrossRefGoogle Scholar
  19. Rosenfeld, M., Kwak, D. and Vinokur, M., 1991, “A Fractional Step Solution Method for the Unsteady Incompressible Navier-Stokes Equations in Generalized Coordinate Systems,”J. Comp. Phys., Vol. 94, pp. 102–137.zbMATHCrossRefGoogle Scholar
  20. Roshko, A., 1955, “On the Wake and Drag of Bluff Bodies,”J. Aeronaut. Sci., Vol. 22, pp. 124–132.zbMATHGoogle Scholar
  21. Thompson, J. F., Warsi, Z. U. A. and Mastin, C. W., 1985,Numerical Grid Generation-Foundations and Application, Elsevier Science Publishing Co., New York.Google Scholar
  22. Tritton D. J., 1987,Physical Fluid Dynamics, Oxford University Press, Oxford.Google Scholar
  23. Tuann, S.-Y. and Olson, M. D., 1978, “Numerical Studies of the Flow around a Circular Cylinder by a Finite Element Method,”Comp. Fluids, Vol. 6, p. 219.zbMATHCrossRefGoogle Scholar
  24. Williamson, C. H. K., 1989, “Oblique and Parallel Modes of Vortex Shedding in the Wake of a Circular Cylinder at Low Reynolds Numbers,”J. Fluid Mech., Vol. 206, pp. 579–627.CrossRefGoogle Scholar
  25. Williamson, C. H. K., 1996, “Vortex Dynamics in the Cylinder Wake,”Annu. Rev. Fluid Mech., Vol. 28, pp. 477–539.CrossRefMathSciNetGoogle Scholar
  26. Williamson, C. H. K. and Roshko, A., 1990, “Measurements of Base Pressure in the Wake of a Cylinder at Low Reynolds Numbers”Z. Flugwiss. Weltraumforsch Vol. 14, pp. 38–46.Google Scholar

Copyright information

© The Korean Society of Mechanical Engineers (KSME) 1998

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSeoul National UniversitySeoulKorea
  2. 2.Hyundai Motor CompanyKyunggi DoKorea

Personalised recommendations