Jacobi forms of higher degree

  • C. Ziegler
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Böcherer, Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen. math. Zeitschrift183 (1983), 21–46.MATHGoogle Scholar
  2. [2]
    Eichler/Zagier, The Theory of Jacobi Forms, Birkhäuser, PM 55, Boston, Basel, Stuttgart (1985).Google Scholar
  3. [3]
    E. Freitag, Siegelsche Modulfunktionen. Springer, Berlin, Heidelberg, New York (1983).MATHGoogle Scholar
  4. [4]
    V. A. Gritsenko, The action of modular operators on the Fourier Jacobi coefficients of Modular forms. Math. USSR Sbornik47 (1984), 237–268.MATHCrossRefGoogle Scholar
  5. [5]
    J.-I. Igusa, Theta Functions. Springer, Berlin, Heidelberg, New York (1972).MATHGoogle Scholar
  6. [6]
    H. Klingen, Metrisierungstheorie und Jacobi Formen. Abh. math. Sem. Hamburg, Bd.57 (1987), 165–178.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    H. Maass, Siegel modular forms and Dirichlet series. Springer, Berlin, Heidelberg, New York (1971).MATHGoogle Scholar
  8. [8]
    A. Murase,L-Functions attached to Jacobi Forms of degreen. Kyoto Sangyo University, preprint (1987).Google Scholar
  9. [9]
    J.-O. Serre, Cours D’Arithmetique. Presses Universitaires De France, Paris (1970).MATHGoogle Scholar
  10. [10]
    G. Shimura, On certain reciprocity laws for theta functions and modular forms. Acta math., Vol.141 (1978), 35–71.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Skoruppa/Zagier, A trace formula for Jacobi Forms. MPI Bonn, Heft 42, preprint (1987).Google Scholar
  12. [12]
    Skoruppa/Zagier, Jacobi Forms and a certain space of modular forms. MPI Bonn, Heft 43, preprint (1987).Google Scholar
  13. [13]
    R. Weissauer, Vektorwertige Siegelsche Modulformen kleinen Gewichts. Journal f. reine u. angew. Math.343 (1983), 184–202.MATHMathSciNetGoogle Scholar
  14. [14]
    T. Yamazaki, Jacobi Forms and a Maass relation for Eisenstein series, Journal Fac. of Science, Univ. of Tokyo, Sec. I.A., Vol.33 (1986), 295–310.MATHMathSciNetGoogle Scholar

Copyright information

© Mathematische Seminar 1989

Authors and Affiliations

  • C. Ziegler
    • 1
  1. 1.Mathematisches Institut der Universität HeidelbergHeidelberg

Personalised recommendations