Einige periodische Kettenbruchentwicklungen und Grundeinheiten quadratischer Ordnungen

  • F. Halter-Koch
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    T. Azuhata, On the Fundamental Units and the Class Numbers of Real Quadratic Fields II, Tokyo J. Math.10 (1987), 259–270.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    L. Bernstein, Fundamental Units and Cycles in the Period of Real Quadratic Number Fields I, II. J. Number Theory8 (1976), 446–491; Pacific J. Math.63 (1976), 37-61 and 63-78.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    L. E. Dickson, History of the Theory of Numbers, vol. II. Chelsea 1971.Google Scholar
  4. [4]
    M. D. Hendy, Applications of a Continued Fraction Algorithm to Some Class Number Problems. Math. Comp.28 (1974), 267–277.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    C. Levesque, Continued Fraction Expansions and Fundamental Units. J. Math. Phys. Sci.22 (1988), 11–44.MATHMathSciNetGoogle Scholar
  6. [6]
    C. Levesque andG. Rhin, A few classes of periodic continued fractions. Utilitas Math.30 (1986), 79–107.MATHMathSciNetGoogle Scholar
  7. [7]
    M. Nyberg, Culminating and almost culminating continued fractions (in Norwegian). Norsk Mat. Tidsskr.31 (1949), 95–99.MATHMathSciNetGoogle Scholar
  8. [8]
    O. Perron, Die Lehre von den Kettenbrüchen, Bd. 1. Teubner 1954.Google Scholar
  9. [9]
    H. C. Williams, A note on the period length of the continued fraction expansion of certain {ie-1}, Utilitas Math.28 (1985), 201–209.MATHMathSciNetGoogle Scholar
  10. [10]
    Y. Yamamoto, Real quadratic number fields with large fundamental units. Osaka J. Math.8 (1971), 261–270.MATHMathSciNetGoogle Scholar

Copyright information

© Mathematische Seminar 1989

Authors and Affiliations

  • F. Halter-Koch
    • 1
  1. 1.Institut für MathematikKarl-Franzens-UniversitätÖsterreich

Personalised recommendations