Skip to main content
Log in

Applications of yeast flocculation in biotechnological processes

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A review on the main aspects associated with yeast flocculation and its application in biotechnological processes is presented. This subject is addressed following three main aspects—the basics of yeast flocculation, the development of “new” flocculating yeast strains and bioreactor development. In what concerns the basics of yeast flocculation, the state of the art on the most relevant aspects of mechanism, physiology and genetics of yeast flocculation is reported. The construction of flocculating yeast strains includes not only the recombinant constitutive flocculent brewer's yeast, but also recombinant flocculent yeast for lactose metabolisation and ethanol production. Furthermore, recent work on the heterologous β-galactosidase production using a recombinant flocculentSaccharomyces cerevisiae is considered. As bioreactors using flocculating yeast cells have particular properties, mainly associated with a high solid phase hold-up, a section dedicated to its operation is presented. Aspects such as bioreactor productivity and culture stability as well as bioreactor hydrodynamics and mass transfer properties of flocculating cell cultures are considered. Finally, the paper concludes describing some of the applications of high cell density flocculation bioreactors and discussing potential new uses of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eddy, A. A. and M. A. D. Phil (1958) Composite nature of the flocculation process of top and bottom strains ofSaccharomyces.J. Inst. Brew. 64: 143–151.

    Google Scholar 

  2. Mill, P. J. (1964) The nature the interaction between flocculent cells in the flocculation ofSaccharomyces cerevisiae.J. Gen. Microbiol. 35: 61–68.

    CAS  Google Scholar 

  3. Speers, R. A., M. A. Tung, T. D. Durance, and G. C. Stewart (1992) Colloidal aspects of yeast flocculation: a review.J. Inst. Brew. 98: 525–531.

    CAS  Google Scholar 

  4. Galleja, C. B. (1973) Role of mitochondria in the sex-directed flocculation of a fission yeast.Arch. Biochem. Biophysics 154: 382–386.

    Google Scholar 

  5. Stewart, G. G., I. Russell, and I. F. Garrison (1973). Further studies on flocculation and co-flocculation in brewer's yeast strains.Amer. Soc. Brew. Chem. Proc: 100–106.

  6. Nishihara, H., T. Toraya, and S. Fukui (1976) Induction of floc-forming ability in brewer's yeast.J. Ferment. Technol. 54: 356–360.

    CAS  Google Scholar 

  7. Nishihara, H., T. Toraya, and S. Fukui (1977) Effect of chemical modification of cell surface components of a brewer's yeast on the floc-forming ability.Arch. Microbiol. 115: 19–23.

    CAS  Google Scholar 

  8. Nishihara, H. (1979) Effect of physical, chemical and enzymatic treatments on the floc-forming ability of intact cells and/or cell walls of a brewer's yeast.Mem. Fac. Educ. Kagawa Univ. II 20: 69–74.

    Google Scholar 

  9. Nishihara, H. and M. Ueda (1979) Effect of chemical modification of proteins on the cell walls of a brewer's yeast on the floc-forming ability.Mem Fac. Educ. Kagawa Univ. II 29: 61–68.

    CAS  Google Scholar 

  10. Nishihara, H., T. Toraya, and S. Fukui (1982) Flocculation of cell walls of brewer's yeast and effects of metal ions, protein-denaturants and enzyme treatments.Arch. Microbiol. 131: 112–115.

    CAS  Google Scholar 

  11. Teixeira, J., M. H. Gonçalves, F. M. Gama, P. Moradas-Ferreira, and M. Mota (1989) Partial characterization of cell wall from a flocculent strain ofKluyveromyces marxianus.Biotechnol. Lett. 11: 579–582.

    CAS  Google Scholar 

  12. Amri, M. A., R. Bonaly, B. Duteurtre, and M. Moll (1981) Caractérisation des constituants pariétaux impliqués dans la flocculation de levuresSaccharomyces uvarum.Biochimie 63: 575–585.

    CAS  Google Scholar 

  13. Miki, B. L. A., N. H. Poon, A. P. James, and V. L. Seligy (1982) Possible mechanism for flocculation interactions governed by geneFLO1 inSaccharomyces cerevisiae.J. Bacteriol. 150: 878–889.

    CAS  Google Scholar 

  14. Taylor, N. W. and W. L. Orton (1978) Aromatic compounds and sugars in [56] flocculation ofSaccharomyces cerevisiae.J. Inst. Brew. 84: 113–114.

    CAS  Google Scholar 

  15. Nishihara, H. and T. Toraya (1987) Essential role of cell surface protein and carbohydrate components in flocculation of a brewer's yeast.Agric. Biol. Chem. 51: 2721–2726.

    CAS  Google Scholar 

  16. Stratford, M. (1992) Yeast flocculation: receptor definition bymnn mutants and Concanavalin A.Yeast 3: 635–645.

    Google Scholar 

  17. Bilang, M., F. Attioui, V. Loppinet, J.-C. Michalski, and R. Bonaly (1996) Structure of the phosphopeptidomannans from flocculent and non-flocculent yeastKluyveromyces lactis.Carbohydrate Res. 280: 303–313.

    CAS  Google Scholar 

  18. Moradas-Ferreira, P., P. A. Fernandes, and M. I. Costa (1994) Yeast flocculation-the role of cell wall proteins.Colloid Surf. B: Biointerf. 2: 159–164.

    CAS  Google Scholar 

  19. Nagarajan, L. and S. Umesh-Kumar (1990) Antigenic studies on flocculating brewer's yeast,Saccharomyces cerevisiae NCYC 227.J. Gen. Microbiol. 136: 1747–1751.

    CAS  Google Scholar 

  20. Stewart, G. G., I. E. Garrison, T. E. Goring, M. Meleg, P. Pipasts, and I. Russell (1976) Biochemical and genetic studies on yeast flocculation.Kemia-Kemi 10: 465–479.

    Google Scholar 

  21. Fernandes, P. A., J. N. Keen, J. B. C. Findlay, and P. Moradas-Ferreira (1992) A protein homologous to glyceraldehyde-3-phosphate dehydrogenase is induced in the cell wall of a flocculentKluyveromyces marxianus.Biochim. Biophys. Acta 1159: 67–73.

    CAS  Google Scholar 

  22. Fernandes, P. A., M. Sousa, and P. Moradas-Ferreira (1993) Flocculation ofKluyveromyces marxianus is induced by a temperature upshift.Yeast 9: 859–866.

    CAS  Google Scholar 

  23. Saito, K., S. Sato, H. Shimoi, H. Iefuji, and M. Tadenuma (1990) Flocculation mechanism ofHansenula anomala J224.Agric. Biol. Chem. 54: 1425–1432.

    CAS  Google Scholar 

  24. Holmberg, S. (1978) Isolation and characterization of a polypeptide absent from non-flocculent mutants ofSaccharomyces cerevisiae.Carlsberg Res. Commun. 43: 401–413.

    CAS  Google Scholar 

  25. Watari, J., Y. Takata, N. Nishikawa, and K. Kamuda (1987) Cloning of a gene controlling yeast flocculence.Proc. Eur. Brew. Conv. Congr.: 537–544, Madrid.

  26. Robertson (1980)Can. J. Biochem. 58: 565–572.

    CAS  Google Scholar 

  27. Moreira, R. F., P. A. Fernandes, and P. Moradas-Ferreira (1998)Kluyveromyces marxianus flocculence and growth at high temperature is dependent on the presence of the protein p37.Microbiol. 144: 681–688.

    CAS  Google Scholar 

  28. Al-Mahmood, S., P. Giummelly, R. Bonaly, F. Delmotte, and M. Monsigny (1988)Kluyveromyces bulgaricus yeast lectins. Isolation of N-acetylglucosamine and galactose-specific lectins: their relation with flocculation.J. Biol. Chem. 263: 3930–3934.

    CAS  Google Scholar 

  29. Al-Mahmood, S., S. Colin, and R. Bonaly (1991)Kluyveromyces bulgaricus yeast lectins. Isolation of two galactose-specific lectin forms from the yeast cell wall.J. Biol. Chem. 266: 20882–20887.

    CAS  Google Scholar 

  30. Straver, M. H., V. M. Traas, G. Smith, and J. W. Kijne (1994) Isolation and partial purification of mannose-specific agglutinin from brewer's yeast involved in flocculation.Yeast 10: 1183–1193.

    CAS  Google Scholar 

  31. Shankar, C. S. and S. Umesh-Kumar (1994) A surface lectin associated with flocculation in brewing strains ofSaccharomyces cerevisiae.Microbiol. 140: 1097–1101.

    Article  CAS  Google Scholar 

  32. Javadekar, V. S., H. Sivaraman, S. R. Sainkar, and M. I. Khan (2000) A mannose-binding protein from the cell surface of flocculentSaccharomyces cerevisiae (NCIM 3528): its role in flocculation.Yeast 16: 99–110.

    CAS  Google Scholar 

  33. Stratford, M. (1989) Yeast flocculation: calcium specificity.Yeast 5: 487–496.

    CAS  Google Scholar 

  34. Stratford, M. and S. Assinder (1991) Yeast flocculation: Flo1 and New Flo phenotypes and receptor structure.Yeast 7: 559–574.

    CAS  Google Scholar 

  35. Hussain, T., O. Salhi, J. Lematre, C. Charpentier, and R. Bonaly (1986) Comparative studies of flocculation and deflocculation ofSaccharomyces avarum andKluyveromyces bulgaricus.Appl. Microbiol. Biotechnol. 25: 232–237.

    Google Scholar 

  36. El-Behari, M., J. N. Ekomé, J. Coulon, B. Pucci, and R. Bonaly (1998) Comparative extraction procedures for a galactose-specific lectin involved in flocculation ofKluyveromyces lactis strains.Appl. Microbiol. Biotechnol. 49: 16–23.

    Google Scholar 

  37. Sousa, M. J., J. A. Teixeira, and M. Mota (1992) Differences in the flocculation mechanism ofKluyveromyces marxianus andSaccharomyces cerevisiae.Biotechnol. Lett. 14: 213–218.

    CAS  Google Scholar 

  38. Zarattini, R. A., J. W. Williams, J. R. Ernandes, and G. G. Stewart (1993) Bacterial-induced flocculation in selected brewing strains ofSaccharomyces.Cerevisiae 4: 65–70.

    Google Scholar 

  39. Stratford, M. (1992) Yeast flocculation: a new perspective.Adv. Microb. Physiol. 33: 1–71.

    CAS  Google Scholar 

  40. Stewart, G. G., I. Russell, and I. F. Garrison (1975) Some considerations of the flocculation characteristics of ale and lager yeast strains.J. Inst. Brew. 81: 248–257.

    CAS  Google Scholar 

  41. Speers, R. A., T. D. Durance, P. Odense, S. Owen, and M. A. Tung (1993) Physical properties of commercial brewing yeast suspensions.J. Inst. Brew. 99: 159–164.

    Google Scholar 

  42. Teunissen, A. W. R. H., and H. Y. Steensma (1995) Review: The dominant flocculation genes ofSaccharomyces cerevisiae constitute a new subtelomeric gene family.Yeast 11: 1001–1013.

    CAS  Google Scholar 

  43. Masy, C. L., A. Henquinet, and M. M. Mestdagh (1992) Flocculation ofSaccharomyces: inhibition by sugars.Can. J. Microbiol. 38: 1298–1306.

    CAS  Google Scholar 

  44. Watari, J., T. Yoshihiro, M. Ogawa, H. Sahara, S. Koshino, M.-L. Onnela, U. Airaksinen, R. Jaatinen, M. Penttila, and S. Keränen (1994) Molecular cloning and analysis of the yeast flocculation geneFLO1.Yeast 10: 211–225.

    CAS  Google Scholar 

  45. Bony, M., D. Thines-Sempoux, P. Barre, and B. Blondin (1997) Localization and cell surface anchoring of theSaccharomyces cerevisiae flocculation protein Flo1p.J. Bacteriol. 179: 4929–2936.

    CAS  Google Scholar 

  46. Kobayashi, O., N. Hayashi, R. Kuroki, and H. Sone (1998) Region of Flo1 proteins responsible for sugar recognition.J. Bacteriol. 180: 6503–6510.

    CAS  Google Scholar 

  47. Bony, M., P. Barre, and B. Blondin (1998) Distribution of the flocculation protein, Flop, at the cell surface during yeast growth: the availability of Flop determines the flocculation level.Yeast 14: 25–35.

    CAS  Google Scholar 

  48. Teixeira, J. and M. Mota (1987) Isolation of a flocculating strain ofK. marxianus by a continuous method.Abstracts of the 4 th Eur. Conf. Biomass for Energy and Ind: 273–274.

  49. Smit, G., M. H. Straver, B. J. J. Lugtenberg, and J. W. Kijne (1992) Flocculence ofSaccharomyces cerevisiae cells is induced by nutrient limitation, with cell surface hydrophobicity as a major determinant.Appl. Environ. Microbiol. 58: 3709–3714.

    CAS  Google Scholar 

  50. Lambrechts, M. G., F. F. Bauer, J. Marmur, and I. S. Pretorius (1996) MucI, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast.Proc. Natl. Acad. Sci. USA 93: 8419–8424.

    CAS  Google Scholar 

  51. Liu, H., C. A. Styles, and G. R. Fink (1996)Saccharomyces cerevisiae S288C has a mutation inFLO8, a gene required for filamentous growth.Genetics 144: 867–978.

    Google Scholar 

  52. Lo, W.-S. and A. M. Dranginis (1998) The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion bySaccharomyces cerevisiae.Mol. Biol. Cell 9: 161–171.

    CAS  Google Scholar 

  53. Rose, A. H. (1984) Physiology of cell aggregation Flocculation bySaccharomyces cerevisiae as a model system. pp. 323–335. In: K. C. Marshall (ed.)Microbiol Adhesion and Aggregation.

  54. Taylor, N. W. and W. L. Orton (1973) Effect of alkaline-earth metal salts on flocculence inSaccharomyces cerevisiae.J. Inst. Brew. 79: 294–297.

    CAS  Google Scholar 

  55. Kuriyama, H., I. Umeda, and H. Kobayashi (1991) Role of cations in the flocculation ofSaccharomyces cerevisiae and discrimination of the corresponding proteins.Can. J. Microbiol. 37: 397–403.

    CAS  Google Scholar 

  56. Stewart, G. G. and T. E. Coring (1976) Effect of some monovalent and divalent metal ions on the flocculation of brewer's yeast strains.J. Inst. Brew. 82: 341–342.

    CAS  Google Scholar 

  57. Amry, M. A., R. Bonaly, B. Duteurtre, and M. Moll (1979) Interrelation between Ca2+ and K+ ions in the flocculation of two brewer yeast strains.Eur. J. Appl. Microbiol. Biotechnol. 7: 235–240.

    Google Scholar 

  58. Stratford, M. and H. M. Brundish (1990) Yeast flocculation: cationic inhibition.Yeast 6: 77–86.

    Google Scholar 

  59. Kihn, J. C., C. L. Masy, and M. M. Mestdagh (1988) Yeast flocculation: competition between non-specific repulsion and specific bonding in cell adhesion.Can. J. Microbiol. 34: 773–778.

    CAS  Google Scholar 

  60. Sousa, M. J., J. A. Teixeira, and M. Mota (1993) Must deacidification with an induced flocculant yeast strain ofSchizosaccharomyces pombe.Appl. Microbiol. Biotechnol. 39: 189–193.

    CAS  Google Scholar 

  61. Stratford, M. (1996) Induction of flocculation in brewing yeasts by change in pH value.FEMS Microbiol. Lett. 136: 13–18.

    CAS  Google Scholar 

  62. Yang, Y. L. and C. Y. Choi (1998) Induction of flocculation ofSaccharomyces cerevisiae by a pH-upshift.Biotechnol. Tech. 12: 591–593.

    CAS  Google Scholar 

  63. Speers, R. A., M. A. Tung, T. D. Durances, and G. G. Stewart (1992) Biochemical aspects of yeast flocculation and its measurement: A review.J. Inst. Brew. 98: 293–300.

    CAS  Google Scholar 

  64. Straver, M. H., P. C. van der Aar, G. Smith, and J. W. Kijne (1993) Determinants of flocculence of brewer's yeast during fermentation in wort.Yeast 9: 527–532.

    CAS  Google Scholar 

  65. Amory, D. E., P. G. Rouxhet, and J. P. Dufour (1988) Flocculence of brewery yeasts and their surface properties: chemical composition, electrostatic charge and hydrophobicity.J. Inst. Brew. 94: 79–84.

    CAS  Google Scholar 

  66. Straver, M. H., J. W. Kijne, and G. Smit (1993) Cause and control of flocculation in yeast.Trends. Biotechnol. 11: 228–232.

    CAS  Google Scholar 

  67. Wilcocks, K. L. and K. A. Smart (1995) The importance of surface charge and hydrophobicity for the flocculation of chain-formation brewing yeast strains and resistance of these parameters to acid washing.FEMS Microbiol. Lett. 134: 293–297.

    CAS  Google Scholar 

  68. Teixeira, J. A., R. Oliveira, J. Azeredo, M. Sousa, and C. Sil (1995) Cell wall surface properties and flocculence of aKluyveromyces marxianus strain.Colloid Surf. B: Biointerf. 5: 197–203.

    CAS  Google Scholar 

  69. Straver, M. H. and J. W. Kijne (1996) A rapid and selective assay for measuring cell surfaces hydrophobicity of brewer's yeast cells.Yeast 12: 207–213.

    CAS  Google Scholar 

  70. Miki, B. L. A., N. H. Poon, and V. L. Seligy (1982) Repression and induction of flocculation interactions inSaccharomyces cerevisiae.J. Bacteriol. 150: 890–899.

    CAS  Google Scholar 

  71. Soares, E. V., J. A. Teixeira, and M. Mota (1991) Influence of aeration and glucose concentration in the flocculation ofSaccharomyces cerevisiae.Biotechnol. Lett. 13: 207–212.

    CAS  Google Scholar 

  72. Stratford, M. and M. H. J. Keenan (1988) Yeast flocculation: quantification.Yeast 4: 107–115.

    CAS  Google Scholar 

  73. Mozes, N., L. L. Schinckus, C. Ghommidh, J.-M. Navarro, and P. G. Rouxhet (1994) Influence of medium composition on surface properties and aggregation of aSaccharomyces cerevisiae strain.Colloids Surf. B: Biointerf. 3: 63–74.

    CAS  Google Scholar 

  74. Burrel, K. (1996) Flocculation, fluid dynamics and fining.The Brewer Feb: 59–60, 62.

    Google Scholar 

  75. Brohan, B. and A. J. McLoughlin (1984) Characterization of the physical properties of yeast flocs.Appl. Microbiol. Biotechnol. 20: 16–22.

    Google Scholar 

  76. Straford, M., H. P. Coleman, and M. H. J. Keenan (1988) Yeast flocculation: a dynamic equilibrium.Yeast 4: 199–208.

    Google Scholar 

  77. Gilliland, R. B. (1951) The flocculation characteristics of brewing yeasts during fermentation.Proc. Eur. Brew. Conf. Congr.: 35–58, Brighton.

  78. Thorne, R. S. W. (1951) Some aspects of yeast flocculence.Proc. Eur. Brew. Congr. Brighton: 21–34.

  79. Windish, S. (1968) Flocculation of brewer's yeasts.The Brewer's Digest Nov: 62–66.

    Google Scholar 

  80. Lewis, C. W. and J. R. Johnston (1974) Genes controlling flocculation in yeast.Proc. Soc. Gen. Microbiol. 1: 73–78.

    Google Scholar 

  81. Johnston, J. R. and C. W. Lewis (1974) Genetic analysis of flocculation inSaccharomyces cerevisiae and tetrad analysis of commercial brewing and baking strains. pp. 339–355. In: K. D. MacDonald (ed.)Second International Symposium on the Genetics of Industrial Microorganisms. Academic Press, London.

    Google Scholar 

  82. Lewis, C. W., J. R. Johnston, and P. A. Martin (1976) The genetics of yeast flocculation.J. Inst. Brew. 32: 158–160.

    Google Scholar 

  83. Stewart, G. G. and I. Russell (1977) The identification, characterization, and mapping of a gene for flocculation inSaccharomyces sp.Can. J. Microbiol. 23: 441–447.

    Article  CAS  Google Scholar 

  84. Russell, I., G. G. Stewart, H. P. Reader, J. R. Johnston, and P. A. Martin (1980) Revised nomenclature of genes that control yeast flocculation.J. Inst. Brew. 86: 120–121.

    Google Scholar 

  85. Lo, W.-S. and A. M. Dranginis (1996)FLO11, a yeast gene related to theSTA genes, encodes a novel cell surface flocculin.J. Bacteriol. 178: 7144–7151.

    CAS  Google Scholar 

  86. Sieiro, C., N. M. Reboredo, P. Blanco, and T. G. Villa (1997) Cloning of a newFLO gene from the flocculatingSaccharomyces cerevisiae IM1-8b strain.FEMS Microbiol. Lett. 146: 109–115.

    CAS  Google Scholar 

  87. Yamashita, I. and S. Fukui (1983) Mating signals control expression of both starch fermentation genes and a novel flocculation geneFLO8 in the yeastSaccharomyces cerevisiae.Agric. Biol. Chem. 47: 2889–2896.

    CAS  Google Scholar 

  88. Yamashita, I. and S. Fukui (1984) Genetic background of glucoamylase production in the yeastSaccharomyces.Agric. Biol. Chem. 48: 137–141.

    CAS  Google Scholar 

  89. Sieiro, C., E. Longo, J. Cansado, J. B. Velasquez, P. Calo, P. Blanco, and T. C. Villa (1993) Genetic evidence for a new flocculation suppressor gene inSaccharomyces cerevisiae.FEMS Microbiol. Lett. 112: 25–30.

    CAS  Google Scholar 

  90. Teunissen, A. W. R. H., E. Holub, J. van dern Hucht, J. A. van der Berg, and H. Y. Steensma (1993) Sequence of the open reading frame of theFLO1 gene fromSaccharomyces cerevisiae.Yeast 9: 423–427.

    CAS  Google Scholar 

  91. Watari, J., Y. Takata, M. Ograwa, N. Nishikawa, and K. Minoru (1989) Molecular cloning of a flocculation gene inSaccharomyces cerevisiae.Agric. Biol. Chem. 53: 901–903.

    CAS  Google Scholar 

  92. Stratford, M. (1992) Yeast flocculation: Reconciliation of physiological and genetic viewpoints.Yeast 8: 25–33.

    CAS  Google Scholar 

  93. Teunissen, A. W. R. H., J. A. van der Berg, and H. Y. Steensma (1995) Localization of the dominant flocculation genesFLO5 andFLO8 ofSaccharomyces cerevisiae.Yeast 11: 735–745.

    CAS  Google Scholar 

  94. Kobayashi, O., H. Suda, T. Ohtani, and H. Sone (1996) Molecular cloning and analysis of the dominant flocculation geneFLO8 fromSaccharomyces cerevisiae.Mol. Gen. Genet. 251: 707–715.

    CAS  Google Scholar 

  95. Vezinhet, F., B. Blondin, and P. Barre (1991) Mapping of theFLO5 gene ofSaccharomyces cerevisiae by transfer of a chromosome during cytoduction.Biotechnol. Lett. 13: 47–52.

    CAS  Google Scholar 

  96. Bidard, F., B. Blondin, S. Dequin, F. Vezinhet, and P. Barre (1994) Cloning and analysis of aFLO5 floccula-tion gene fromS. cerevisiae.Curr. Genet. 25: 196–201.

    CAS  Google Scholar 

  97. Hinrichs, J., U. Stahl, and K. Esser (1983) Flocculation inSaccharomyces cerevisiae and mitochondrial DNA structure.Appl. Microbiol. Biotechnol. 29: 48–54.

    Google Scholar 

  98. Bossier, P., F. Goethals, and C. Rodrigues-Pousada (1997) Constitutive flocculation inSaccharomyces cerevisiae through overexpression of theGTS1 gene, coding for a “Glo”-type Zn-finger-containing protein.Yeast 13: 717–725.

    CAS  Google Scholar 

  99. Moreira, R. F., F. Ferreira-da-Silva, F. A. Fernandes, and P. Moradas-Ferreira (2000) Flocculation ofSaccharomyces cerevisiae is induced by transformation with theGAP1 gene fromKluyveromyces marxianus.Yeast 16: 231–240.

    CAS  Google Scholar 

  100. Smart, K. A. (1995) The importance of the cell brewing yeast cell wall.Brewer's Guardian April: 43–50.

    Google Scholar 

  101. Barney, M. C., G. P. Jansen, and J. R. Helbert (1980) Use of genetic transformation for the introduction of flocculence into yeast.Amer. Soc. Brew. Chem. J. 38: 71–74.

    CAS  Google Scholar 

  102. Figueroa, L. I., M. F. Richard, and M. R. van Broock (1984). Transfer of the flocculation property of the baker's yeastSaccharomyces cerevisiae by conventional genetic manipulation.Biotechnol. Lett 6: 171–176.

    Google Scholar 

  103. Lima, N., C. Moreira, J. A. Teixeira, and M. Mota (1995) Introduction of flocculation into industrial yeast,Saccharomyces cerevisiae sake, by protoplast fusion.Microbios 31: 187–197.

    Google Scholar 

  104. Watar, J., M. Kudo, N. Nishikawa, and M. Kamimura (1990) Construction of a flocculent yeast cells (Saccharomyces cerevisiae) by mating or protoplast fusion a yeast cell containing the flocculation gene.FLO5. Agric. Biol. Chem. 54: 1677–1681.

    Google Scholar 

  105. Watari, J., Y. Takata, M. Ogawa, J. Murakami, and S. Koshino (1991) Breeding of flocculent industrialSaccharomyces cerevisiae strains by introducing the flocculation geneFLO1.Agric. Biol. Chem. 55: 1547–1552.

    CAS  Google Scholar 

  106. Watari, J., M. Nomura, H. Sahara, and S. Koshino (1994) Construction of flocculent brewer's yeast by chromosomal integration of the yeast flocculation geneFLO1.J. Inst. Brew. 100: 73–77.

    CAS  Google Scholar 

  107. Shinohara, T., Mamiya, S., and Yanagida, F. (1997) Introduction of flocculation property into wine yeasts (Saccharomyces cerevisiae) by hybridization.J. Ferment. Bioeng. 83: 96–101.

    CAS  Google Scholar 

  108. Hodgson, J. A., D. R. Berry, and J. R. Johnston (1985) Discrimination by heat and proteinase treatments between flocculent phenotypes conferred onSaccharomyces cerevisiae by the genesFLO4 andFLO5.J. Gen. Microbiol. 131: 3219–3227.

    CAS  Google Scholar 

  109. Hammond, J. R. M. (1995) Genetically-modified brewing yeasts for the 21st century. Progress to date.Yeast 11: 1613–1627.

    CAS  Google Scholar 

  110. Venâncio, A., N. Lima, and M. Mota (1995) Genetic transformation of intact industrial flocculating yeast cells (Saccharomyces cerevisiae) by using lithium acetate and YAC4 plasmid.Yeast 11: 607.

    Google Scholar 

  111. Venâncio, A., L. Domingues, and N. Lima (1999) Transformation of a flocculatingSaccharomyces cerevisiae using lithium acetate and pYAC4.J. Basic Microbiol. 1: 37–41.

    Google Scholar 

  112. Domingues, L., J. A. Teixeira, and N. Lima (1999) Construction of a flocculentSaccharomyces cerevisiae fermenting lactose.Appl. Microbiol. Biotechnol. 51: 621–626.

    CAS  Google Scholar 

  113. Sreekrishna, K. and R. C. Dickson (1985) Construction of strains ofSaccharomyces cerevisiae that grow on lactose.Proc. Natl. Acad. Sci. USA 82: 7909–7913.

    CAS  Google Scholar 

  114. Kumar, V., S. Ramakrishna, T. T. Terri, J. K. C. Knowles, and B. S. Hartley (1992)Saccharomyces cerevisiae cells secreting anAspergillus niger β-galactosidase grown on whey permeate.Biotechnology 10: 82–85.

    CAS  Google Scholar 

  115. Domingues, L., M.-L. Onnela, J. A. Teixeira, N. Lima, and M. Penttilä (2000) Construction of a flocculent brewer's yeast strain secretingAspergillus niger β-galactosidase.Appl. Microbiol. Biotechnol. 54: 97–103.

    CAS  Google Scholar 

  116. Mota, M. and J. A. Teixeira (1990) Utilization of an external loop bioreactor for the isolation of a flocculating strain ofKluyveromyces marxianus.Curr. Microbiol. 20: 209–214.

    Google Scholar 

  117. Teixeira, J. A., M. Mota, and G. Goma (1990) Continuous ethanol production of a flocculating strain ofKluyveromyces marxianus: bioreactor performance.Bioprocess Eng. 5: 123–127.

    CAS  Google Scholar 

  118. Domingues, L., M. M. Dantas, N. Lima, and J. A. Teixeira (1999) Continuous ethanol fermentation of lactose by a recombinant flocculatingSaccharomyces cerevisiae strain.Biotechnol. Bioeng. 64: 692–697.

    CAS  Google Scholar 

  119. Lima, N., J. A. Teixeira, and M. Mota (1992) Enhancement of metabolic rates of yeast flocculent cells through the use of polymeric additives.Bioprocess Eng. 7: 343–343.

    CAS  Google Scholar 

  120. Sousa, M. L. and J. A. Teixeira (1994) An explanation for the interaction mechanism of an anionic polymeric additive on yeast flocculent cells.Biotechnol. Lett. 16: 751–754.

    CAS  Google Scholar 

  121. Javadekar, V. S., H. SivaRaman, and D. V. Gokhale (1995) Industrial yeast strain improvement: construction of a highly flocculent yeast with a killer character by protoplast fusion.J. Ind. Microbiol. 15: 94–102.

    CAS  Google Scholar 

  122. Onken, U. and P. Weiland (1933) Airlift fermenters: construction, behavior, and uses, pp. 67–95. In:Advances in Biotechnological Processes 1. Alan R. Liss, Inc., New York, USA.

    Google Scholar 

  123. Kennard, M. and M. Janekeh (1991) Two- and three-phase mixing in a concentric tube gas-lift fermentor.Biotechnol. Bioeng. 38: 1261–1270.

    CAS  Google Scholar 

  124. Siegel, M. H. and C. W. Robinson (1992) Applications of airlift gas-liquid-solids reactors in biotechnology.Chem. Eng. Sci. 47: 3215–3229.

    CAS  Google Scholar 

  125. Merchuk, J. C., N. Ladwa, A. Cameron, M. Bulmer, and A. Pickett (1994) Concentric-tube airlift reactors: effects of geometrical design on performance.AIChE J. 40: 1105–1117.

    CAS  Google Scholar 

  126. Sousa, M. L., J. A. Teixeira, and M. Mota (1994) Comparative analysis of ethanolic fermentation in two continuous flocculation bioreactors and effect of flocculation additive.Bioprocess Eng. 11: 83–90.

    CAS  Google Scholar 

  127. Sousa, M. L., M. Mota, and J. A. Teixeira (1994) Influence of operational parameters on the start-up of a flocculation airlift bioreactor.Col. Surf. B: Biointerfaces 2: 181–188.

    CAS  Google Scholar 

  128. Ganzeveld, K. J., Y. Chisty, and M. Moo-Young (1995) Hydrodynamic behaviour of animal cell microcarrier suspensions in split-cylinder airlift bioreactors.Bioprocess Eng. 12: 239–247.

    CAS  Google Scholar 

  129. Sousa, M. L. and J. A. Teixeira (1996) Characterization of oxygen uptake and mass transfer in flocculent yeast cell cultures with or without a flocculation additive.Biotechnol. Lett. 18: 229–234.

    CAS  Google Scholar 

  130. Michalski, H. J. (1992) Air-lift bioreactors, in: M. Berovic and T. Koloini, (eds.)Bioreactor Engineering Course Workshop Notes, Italy.

  131. Freitas, C. and J. A. Teixeira (1998) Effect of liquid-phase surface tension on hydrodynamics of a three-phase airlift bioreactor with an enlarged degassing zone.Bioprocess Eng. 19: 451–457.

    CAS  Google Scholar 

  132. Smith, B. C. and D. R. Skidmore (1990) Mass transfer phenomena in an airlift reactor: effects of solids loading and temperature.Biotechnol. Bioeng. 35: 483–491.

    CAS  Google Scholar 

  133. Siegel, M. H., M. Hallaile, M. Herskowitz, and J. C. Merchuk (1988) Hydrodynamics and mass transfer in a three-phase airlift reactor.Proceedings of the 2 nd International Conference on Bioreactor Fluid Dynamics, September 21–23.

  134. Freitas, C. and J. A. Teixeira (1997) Hydrodynamic studies in on airlift reactor with and enlarged degassing zone.Bioprocess Eng. 18: 267–279.

    Google Scholar 

  135. Lu, W.-J., S.-J. Hwang, and C.-M. Chang (1995) Liquid velocity and gas holdup in three-phase internal loop airlift reactors with low density particles.Chem. Eng. Sci. 50: 1301–1310.

    CAS  Google Scholar 

  136. Vicente, A. A. and J. A. Teixeira (1995) Hydrodynamic performance of a three-phase airlift bioreactor with an enlarged degassing zone.Bioprocess Eng. 14: 17–22.

    CAS  Google Scholar 

  137. Freitas, C. and J. A. Teixeira (1998) Solid-phase distribution in an airlift reactor with an enlarged degassing zone.Biotechnol. Tech. 12: 219–224.

    CAS  Google Scholar 

  138. Karamanev, D. G., T. Nagamune, and I. Endo (1992) Hydrodynamic and mass transfer study of a gas-liquid-solid draft tube spouted bed bioreactor.Chem. Eng. Sci. 47: 3581–3588.

    CAS  Google Scholar 

  139. Verlaan, P. and J. Tramper (1987) Hydrodynamics, axial dispersion and gas-liquid oxigen transfer in an airlift loop bioreactor with three-phase flow.Proceedings of the International Conference on Bioreactors and Biotransformations. November 9–12. Gleneagles, Scotland.

  140. Komáromy, P. and C. Sisak (1994) Investigation of gasliquid oxygen transport in three-phase bioreactorHungarian J. Ind. Chemistry 22: 147–151.

    Google Scholar 

  141. Teixeira, J. A. and M. Mota (1990) Experimental assessment of internal diffusion limitations in yeast flocs.Chem. Eng. J. 43: B13-B17.

    CAS  Google Scholar 

  142. Sousa, M. L. and J. A. Teixeira (1991) Reduction of diffusional limitations in yeast flocs.Biotechnol. Lett. 13: 883–888.

    CAS  Google Scholar 

  143. Ananta, I., M. A. Subroto, and P. M. Doran (1995) Oxygen transfer and culture characteristics of self-immobilizedSolanum aviculare aggregates.Biotechnol. Bioeng. 47: 541–549.

    CAS  Google Scholar 

  144. Libicki, S. B., P. M. Salmon, and C. R. Robertson (1988) The effective diffusive permeability of a nonreacting solute in microbial cell aggregates.Biotechnol. Bioeng. 32: 68–85.

    CAS  Google Scholar 

  145. Weir, S., D. K. Ramsden, J. Hughes, and F. Le-Thomas (1994) The strength of yeast flocs produced by the cationic flocculant chitosan: Effect of suspension medium and of pretreatment with anionic polyelectrolytes.Biotechnol. Tech. 8: 129–132.

    CAS  Google Scholar 

  146. Salt, D. E., A. C. Bentham, S. Hay, A. Idris, J. Gregory, M. Hoare, and P. Dunnill (1996) The mechanism of flocculation of aSaccharomyces cerevisiae cell homogenate using polyethyleneimine.Bioprocess Eng. 15: 71–76.

    CAS  Google Scholar 

  147. Hamdi, M. (1995) Biofilm thickness effect on the diffusion limitation in the bioprocess reaction: Biofloc critical diameter significance.Bioprocess Eng. 12: 193–197.

    CAS  Google Scholar 

  148. Vicente, A., J. M. Meinders, and J. A. Teixeira (1996) Sizing and counting ofSaccharomyces cerevisiae floc populations by image analysis, using an automatically calculated threshold.Biotechnol. Bioeng. 51: 673–678.

    CAS  Google Scholar 

  149. Vicente, A. A., M. Dluhý, E. C. Ferreira, M. Mota, and J. A. Teixeira (1998) Mass transfer properties of glucose and O2 inSaccharomyces cerevisiae flocs.Biochem. Eng. J. 2: 35–43.

    CAS  Google Scholar 

  150. Vicente, A. A., M. Dluhý, and J. A. Teixeira (1997) A new technique for measuring kinetic and mass transfer parameters in flocs ofSaccharomyces cerevisiae.Biotechnol. Tech. 11: 113–116.

    CAS  Google Scholar 

  151. Vicente, A. A., M. Dluhý, E. C. Ferreira, and J. A. Teixeira (1998) Modelling diffusion-reaction phenomena in yeast flocs ofSaccharomyces cerevisiae.Bioprocess Eng. 18: 335–342.

    CAS  Google Scholar 

  152. Domingues, L., N. Lima, and J. A. Teixeira (2000) On the contamination of flocculating yeast high cell density continuous bioreactor.Biotechnol. Bioeng. 68: 584–587.

    CAS  Google Scholar 

  153. Teixeira, J. A. and M. Mota (1992) Flocculation bioreactors. pp. 413–428. In: T. G. Villa and J. Abalde. (eds.)Profiles on Biotechnology. Servicio de Publicaciones, Universidade de Santiago, Spain.

    Google Scholar 

  154. Webster, I. A. (1981) Criteria for the prediction of diffusional control within whole cells and cell flocs.J. Chem. Tech. Biotechnol. 31: 178–182.

    Article  CAS  Google Scholar 

  155. Vicente, A. A., M. Dluhý, and J. A. Teixeira (1999) increase of ethanol productivity in an airlift reactor with a modified draught tube.Can. J. Chem. Eng. 77: 497–502.

    CAS  Google Scholar 

  156. Greenshields, R. N. and E. L. Smith (1971) Tower-fermentation systems and their applications.Chem. Engineer May: 182–190.

    Google Scholar 

  157. Smith, E. L. and R. N. Greenshields (1974) Tower-fermentation systems and their application to aerobic processes.Chem. Engineer January: 28–34.

    Google Scholar 

  158. Linko, M., I. Virkajärvi, N. Pohjala, K. Lindborg, J. Kronlöf, and E. Pajunen (1997) main fermentation with immobilized yeast—a breakthrough?Proceedings of EBC Congress 1997: 385–394.

    Google Scholar 

  159. Masschelein, C. A. (1997) A realistic view on the role of research in the brewing industry today.J. Inst. Brew. 103: 103–113.

    Google Scholar 

  160. Mensour, N. A., A. Margaritis, C. L. Briens, H. Pilkington, and I. Russel (1997) New developments in the brewing industry using immobilized yeast cell bioreactor systems.J. Inst. Brew. 103: 363–370.

    CAS  Google Scholar 

  161. Šmogrovicová, D., Z. Dömény, P. Gemeiner, A. Malovíková, and E. Šturdík (1997) Reactors for continuous primary beer fermentation using immobilized yeast.Biotechnol. Tech. 11: 261–264.

    Google Scholar 

  162. Dömény, Z., D. Šmogrovicová, P. Gemeiner, E. Šturdík, J. Pátková, and A. Malovíková (1998) Continuous secondary fermentation using immobilized yeast.Biotechnol. Lett. 20: 1041–1045.

    Google Scholar 

  163. Tata, M., P. Bower, S. Bromberg, D. Duncombe, J. Fehring, V. Lau, D. Ryder, and P. Stassi (1999) Immobilized yeast bioreactor systems for continuous beer fermentation.Biotechnol. Prog. 15: 105–113.

    CAS  Google Scholar 

  164. Kida, K., M. Yamadaki, S.-I. Asano, T. Nakata, and Y. Sonoda (1989) The effect of aeration on stability of continuous ethanol fermentation by a flocculating yeast.J. Fermem. Bioeng. 68: 107–111.

    CAS  Google Scholar 

  165. Fontana, A., C. Ghommidh, J. P. Guiraud, and J. M. Navarro (1992) Continuous alcoholic fermentation of sucrose using flocculating yeast. The limits of invertase activity.Biotechnol. Lett. 14: 505–510.

    CAS  Google Scholar 

  166. Kida, K., K. Kume, S. Morimura, and Y. Sonoda (1992) Repeated-batch fermentation process using a thermotolerant flocculating yeast constructed by protoplast fusion.J. Ferment. Bioeng. 47: 169–173.

    Google Scholar 

  167. Kuriyama, H., H. Ishibashi, H. Miyagawa, H. Kobayashi, and M. Eiichi (1993) Optimization of two-stage continuous ethanol fermentation using flocculating yeast.Biotechnol. Lett. 15: 415–420.

    CAS  Google Scholar 

  168. Wieczorek, A. and H. Michalski (1994) Continuous ethanol production by flocculating yeast in the fluidized bed bioreactor.FEMS Microbiol. Rev. 14: 69–74.

    CAS  Google Scholar 

  169. Roca, E., C. Ghommidh, J. M. Navarro, and J. M. Lema (1995) Hydraulic model of a gas-lift bioreactor with flocculating yeast.Bioprocess Eng. 12: 269–272.

    CAS  Google Scholar 

  170. Schorr-Galindo, S., C. Ghommidh, and J. P. Guiraud (1995) Inulin enrichment by fermentation in a flocculating yeast reactor.Biotechnol. Lett. 17: 1303–1310.

    Google Scholar 

  171. Abate, C., D. Callieri, E. Rodríguez, and O. Garro (1996) ethanol production by a mixed culture of flocculent strains ofZymomonas mobilis andSaccharomyces sp.Appl. Microbiol. Biotechnol. 45: 580–583.

    CAS  Google Scholar 

  172. Jianfeng, X., X. Jian, H. Aiming, F. Pusun, and S. Zhiguo (1998) Kinetic and technical studies on large-scale culture ofRhoiola sachalinensis compact callus aggregates with air-lift reactors.J. Chem. Technol. Biotechnol. 72: 227–234.

    Google Scholar 

  173. Mafra, I., J. M. M. Cruz, and J. A. Teixeira (1997) Beer maturation in a continuously operating bioreactor using a flocculation brewer's yeast strain.Proceedings of the EBC Congress 1997.

  174. Domingues, L., M. M. Dantas, J. A. Teixeira, and N. Lima (1999) Continuous cheese whey permeate alcoholic fermentation with a flocculent recombinantSaccharomyces cerevisiae.Curr. Genet. 35: 300.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Teixeira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domingues, L., Vicente, A.A., Lima, N. et al. Applications of yeast flocculation in biotechnological processes. Biotechnol. Bioprocess Eng. 5, 288–305 (2000). https://doi.org/10.1007/BF02942185

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02942185

Keywords

Navigation