Advertisement

Biotechnology and Bioprocess Engineering

, Volume 5, Issue 4, pp 247–252 | Cite as

Analysis of heat shock promoters inHansenula polymorpha: TheTPS1 promoter, a novel element for heterologous gene expression

  • Carsten Amuel
  • Gerd GellissenEmail author
  • Cornelis P. Hollenberg
  • Manfred Suckow
Article

Abstract

The strength and regulatory characteristics of the heat-inducibleHSA1, HSA2 andTPS1 promoters were compared with those of the well-established, carbon source-regulatedFMD promoter in aHansenula polymorpha-based host systemin vivo. In addition, theSaccharomyces cerevisiae-derivedADH1 promoter was analysed. WhileADH1 promoter showed to be of poor activity in the foreign host, the strength of the heat shockTPS1 promoter was found to exceed that of theFMD promoter, which at present is considered to be the strongest promoter for driving heterologous gene expression inH. polymorpha.

Keywords

Hansenula polymorpha reporter genes promoter test system heat-inducible promoter FMD promoter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Gellissen, G. and C. P. Hollenberg (1997) Application of yeasts in gene expression studies: A comparison ofSaccharomyces cerevisiae, Hansenula polymorpha andKluyveromyces lactis—a review.Gene 190: 87–97.CrossRefGoogle Scholar
  2. [2]
    Gellissen, G. and C. P. Hollenberg (1999)Hansenula. pp. 976–982. In: R. K. Robinson, C. Batt and P. D. Patel (eds.)Encyclopedia of Food Microbiology, Vol. 2. Academic Press. San Diego, CA, USA.Google Scholar
  3. [3]
    Gellissen, G., C. P. Hollenberg, and Z. A. Janowicz (1995) Gene expression in methylotrophic yeasts. pp. 395–439 In: A. Smith (ed.)Gene Expression in Recombinant Microorganisms. Marcel Dekker, New York, NY, USA.Google Scholar
  4. [4]
    Mayer, A. F., K. Hellmuth, H. Schlieker, R. Lopez-Ulibarri, S. Oertel, U. Dahlems, A. W. Strasser, and A. P. van Loon (1999) An expression system matures: A highly efficient and cost-effective process for phytase production by recombinant strains ofHansenula polymorpha.Biotechnol. Bioeng. 63: 73–381.CrossRefGoogle Scholar
  5. [5]
    Cox, H., D. Mead, P. Sudbery, M. Eland, and L. Evans (2000) Constitutive expression of recombinant proteins in the methylotrophic yeastHansenula polymorpha using thePMA1 promoter.Yeast (in Press).Google Scholar
  6. [6]
    Brito, N., M. D. Peréz, G. Perdomo, C. González, P. Garcia-Lugo, and J. M. Siverio (1999) A set ofHansenula polymorpha integrative vectors to constructlacZ fusions.Appl. Microbiol. Biotechnol. 53: 23–29.CrossRefGoogle Scholar
  7. [7]
    Reinders, A., I. Romano, A. Wiemken, and C. de Virgilio (1999) The thermophilic yeastHansenula polymorpha does not require trehalose synthesis for growth at high temperatures but does for normal acquisition of thermotolerance.J. Bacteriol. 181: 4665–4668.Google Scholar
  8. [8]
    Titorenko, V. I., M. E. Evers, A. Diesel, B. Samyn, J. Van Beeumen, R. Roggenkamp, J. A. Kiel, I. J. van der Klei, and M. Veenhuis (1996) Identification and characterization of cytosolicHansenula polymorpha proteins belonging to the Hsp70 protein family.Yeast 12: 849–857.CrossRefGoogle Scholar
  9. [9]
    Diesel, A. (1997) Die hsp70-Gene der Methylotrophen HefeHansenula polymerpha. Ph. D. Thesis, Heinrich-Heine-Universität, Düsseldorf, Germany.Google Scholar
  10. [10]
    Thevelein, J. M. (1996) Regulation of trehalose metabolism and its relevance to cell growth and function. pp. 395–420. In: R. Bramble and G. A. Marzluf (eds.)The Mycola III. Springer Verlag, Berlin, Germany.Google Scholar
  11. [11]
    Bogdanova, A. I., O. S. Kustikova, M. O. Agaphonov, and M. D. Ter-Avenesyan (1998) Sequences ofSaccharomyces cerevisiae 2 μm DNA improving plasmid partitioning inHansenula polymorpha.Yeast 14: 1–9.CrossRefGoogle Scholar
  12. [12]
    Sohn, J. H., E. S. Choi, C. H. Kim, M. C. Agaphonov, M. D. Ter-Avenesyan, J. S. Rhee, and S. K. Rhee (1996) A novel autonomously replicating sequence (ARS) for multiple integration in the yeastHansenula polymorpha DL-1.J. Bacteriol. 178: 4420–4428.Google Scholar
  13. [13]
    Sohn, J. H., E. S. Choi, H. A. Kang, J. S. Rhee, and S. K. Rhee (1999) A family of telomere-associated autonomously replicating sequences and their function in targeted recombination inHansenula polymorpha DL-1.J. Bacteriol. 18: 1005–1013.Google Scholar
  14. [14]
    Agaphonov, M. O., M. Y. Beburov, M. D. Ter-Avanesyan, and V. N. Smirnov (1995) A disruption-replacement approach for the targeted integration of foreign genes inHansenula polymorpha.Yeast 11: 1241–1247.CrossRefGoogle Scholar
  15. [15]
    Janowicz, Z. A., K. Melber, A. Merckelbach, E. Jacobs, N. Harford, M. Comberbach, and C. P. Hollenberg (1991) Simultaneous expression of the S and L surface antigens of hepatitis B, and formation of mixed particles in the methylotrophic yeast.Hansenula polymorpha. Yeast 7: 431–443.CrossRefGoogle Scholar
  16. [16]
    Zurek, C., E. Kubis, P. Keup, D. Hörlein, J. Beunink, J. Thömmes, R. M. Kula, C. P. Hollenberg, and G. Cellissen (1996) Production of two aprotinin variants inHansenula polymorpha.Process Biochem. 31: 679–689.CrossRefGoogle Scholar
  17. [17]
    Gatzke, R., U. Weydemann, Z. A. Janowicz, and C. P. Hollenberg (1995) Stable multicopy integration of vector sequences inHansenula polymorpha.Appl. Microbiol. Biotechnol. 43: 844–849.CrossRefGoogle Scholar
  18. [18]
    Suckow, M. and C. P. Hollenberg (1998) The activation specificities of wild-type and mutant Gcn4pin vivo can be different from the DNA binding specificites of the corresponding bZip peptidesin vitro.J. Mol. Biol. 176: 887–902.CrossRefGoogle Scholar
  19. [19]
    Bradford, M. M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72: 248–254.CrossRefGoogle Scholar
  20. [20]
    Miller, J. H. (1972)Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.Google Scholar
  21. [21]
    Niedenthal, R. K., L. Riles, M. Johnston, and J. H. Hegemann (1996) Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast.Yeast 2: 773–786.CrossRefGoogle Scholar
  22. [22]
    Lim, C. R., Y. Kimata, M. Oka, K. Nomaguchi, and K. Kochno (1995) Thermosensitivity of green flourescent protein flourescence utilized to reveal novel nuclear like compartments in a mutant nucleoporin NSP1.J. Biochem. 118: 13–17.Google Scholar
  23. [23]
    Hinnen, A., F. Buxton, B. Chaudhuri, J. Heim, T. Hottiger. B. Meyhack, and G. Pohlig (1995) Gene expression in recombinant yeast. pp. 121–193 In: A. Smith (ed.)Gene Expression in Recombinant Microorganisms. Marcel Dekker New York, NY, USA.Google Scholar
  24. [24]
    Gellissen, G., Z. A. Janowicz, U. Weydemann, K. Melber, A. W. M. Strasser, and C. P. Hollenberg (1992) High-level expression of foreign genes inHansenula polymorpha.Biotech. Adv. 10: 179–189.CrossRefGoogle Scholar
  25. [25]
    Gellissen, G., C. P. Hollenberg, and Z. A. Janowicz (1994) Gene expression in methylotrophic yeasts. pp. 195–239 In: A. Smith (ed.)Gene Expression in Recombinant Microorganisms. Marcel Dekker, New York, NY, USA.Google Scholar
  26. [26]
    Denis, C. L., J. Ferguson, and E. T. Young (1983) mRNA levels for the fermentative alcohol dehydrogenase ofSaccharomyces cerevisiae decrease upon growth on a non-fermentable carbon source.J. Biol. Chem. 258: 1165–1171.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2000

Authors and Affiliations

  • Carsten Amuel
    • 1
  • Gerd Gellissen
    • 2
    Email author
  • Cornelis P. Hollenberg
    • 1
  • Manfred Suckow
    • 2
  1. 1.Institut für MikrobiologieHeinrich-Heine-UniversitätDüsseldorfGermany
  2. 2.Rhein Biotech GmbHDüsseldorfGermany

Personalised recommendations