Applied Biochemistry and Biotechnology

, Volume 45, Issue 1, pp 569–584

Arabinose utilization by xylose-fermenting yeasts and fungi

  • James D. McMillan
  • Brian L. Boynton
Session 3 Bioprocessing Research


Various wild-type yeasts and fungi were screened to evaluate their ability to fermentl-arabinose under oxygen-limited conditions when grown in defined minimal media containing mixtures ofl-ara-binose,d-xylose, andd-glucose. Although all of the yeasts and some of the fungi consumed arabinose, arabinose was not fermented to ethanol by any of the strains tested. Arabitol was the only major product other than cell mass formed froml-arabinose; yeasts converted arabinose to arabitol at high yield. The inability to fermentl-arabinose appears to be a consequence of inefficient or incomplete assimilation pathways for this pentose sugar.

Index Entries

l-arabinose pentose metabolism ethanol fermentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lynd, L. R., Cushman, J. H., Nichols, R. J., and Wyman, C. E. (1991),Science 251, 1318–1323.CrossRefGoogle Scholar
  2. 2.
    Wyman, C. E., Bain, R. L., Hinman, N. D., and Stevens, D. J. (1993), inRenewable Energy: Sources for Fuels and Electricity, Johansson, T. B., ed., Island, Washington, DC, pp. 865–923.Google Scholar
  3. 3.
    Wenzl, H. F. J. (1970),The Chemical Technology of Wood. Academic, New York, pp. 92–156.Google Scholar
  4. 4.
    McMillan, J. D. (1992), NREL/TP-421-4978 NREL, Golden, CO.Google Scholar
  5. 5.
    Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989),Appl. Biochem. Biotechnol. 20/21, 391–401.CrossRefGoogle Scholar
  6. 6.
    Schell, D. J., Torget, R., Power, A., Walter, P. J., Grohmann, K., and Hinman, N. D. (1991),Appl. Biochem. Biotechnol. 28/29, 87–97.CrossRefGoogle Scholar
  7. 7.
    Grohmann, K., Torget, R., and Himmel, M. (1985),Biotechnol. Bioeng. Symp. 15, 59–80.Google Scholar
  8. 8.
    Grohmann, K., Torget, R., and Himmel, M. (1986),Biotechnol. Bioeng. Symp. 17, 135–151.Google Scholar
  9. 9.
    Torget, R., Himmel, M., Wright, J. D., and Grohmann, K. (1988),Appl. Biochem. Biotechnol. 17, 89–104.CrossRefGoogle Scholar
  10. 10.
    Spindler, D. D., Wyman, C. E., Grohmann, K., and Torget, R. W. (1989). SERI/SP-231-3520. NREL, Golden, CO.Google Scholar
  11. 11.
    Torget, R., Werdene, P., Himmel, M., and Grohmann, K. (1990),Appl. Biochem. Biotechnol. 24/25, 115–126.CrossRefGoogle Scholar
  12. 12.
    Wright, J. D. (1988), SERI/TP-231-3310. NREL, Golden, CO.Google Scholar
  13. 13.
    Chum, H. L., Douglas, L. J., Feinberg, D. A., and Schroeder, H. A. (1985), SERI/TP-231-2183. NREL, Golden, CO.Google Scholar
  14. 14.
    Torget, R., Walter, P., Himmel, M., and Grohmann, K. (1991),Appl. Biochem. Biotechnol. 28/29, 75–86.CrossRefGoogle Scholar
  15. 15.
    Torget, R., Himmel, M., and Grohmann, K. (1992),Appl. Biochem. Biotechnol. 34/35, 115–123.CrossRefGoogle Scholar
  16. 16.
    McMillan, J. D. (1993), NREL/TP-421-4944. NREL, Golden, CO.Google Scholar
  17. 17.
    Kruse, R. and Finn, R. K. (1987), 194th Am. Chem. Soc. National Meeting, New Orleans, Louisiana, August 30-September 4.Abstr. Pap. Am. Chem. Soc. 194:0, MBTD 36.Google Scholar
  18. 18.
    Schepers, H-J., Bringer-Meyer, S., and Sahm, H. (1987), Z.Naturforsch. Sect. C: Biosci. 42:4, 401–407.Google Scholar
  19. 19.
    Tolan, J. S. and Finn, R. K. (1987),Appl. Environ. Microbiol. 53:9, 2033–2038.Google Scholar
  20. 20.
    Beall, D. S., Ohta, K., and Ingram, L. O. (1991),Biotechnol. Bioeng. 38, 296–303.CrossRefGoogle Scholar
  21. 21.
    Gottschalk, G. (1986),Bacterial Metabolism, 2nd ed., Springer-Verlag, New York: pp. 213, 214.Google Scholar
  22. 22.
    Ueng, P. P. and Gong, C. (1982),Enzyme Microb. Technol. 4, 169–171.CrossRefGoogle Scholar
  23. 23.
    Suihko, M.-L. (1983),Biotechnol. Lett. 5, 721–724.CrossRefGoogle Scholar
  24. 24.
    Enari, T-M. and Suihko, M-L. (1984),CRC Crit. Rev. Biotech. 1, 229–240.CrossRefGoogle Scholar
  25. 25.
    Deshpande, V., Keskar, S., Mishra, C., and Rao, M. (1986),Enzyme Microb. Technol. 8, 149–152.CrossRefGoogle Scholar
  26. 26.
    Wu, J. F., Lastick, S. M., and Updegraff, D. M. (1986),Nature 321, 887, 888.CrossRefGoogle Scholar
  27. 27.
    Mountfort, D. O. and Rhodes, L. L. (1991),Appl. Environ. Microbiol. 57:7, 1963–1968.Google Scholar
  28. 28.
    Karczewska, H. (1959),Compt.-rend. Lab. Carlsberg 31, 251–258.Google Scholar
  29. 29.
    Barnett, J. A. (1976),Adv. Carbohydrate Chem. Biochem. 32, 125–234.CrossRefGoogle Scholar
  30. 30.
    Gong, C., Claypool, T. A., McCracken, L. D., Maun, C. M., Ueng, P. P., and Tsao, G. T. (1983),Biotechnol. Bioeng. 25, 85–102.CrossRefGoogle Scholar
  31. 31.
    du Preez, J. C., Bosch, M., and Prior, B. A. (1986),Appl. Microbiol. Biotechnol. 23, 228–233.CrossRefGoogle Scholar
  32. 32.
    Delgenes, J. P., Moletta, R., and Navarro, J. M. (1988),Appl. Microbiol. Biotechnol. 29, 155–161.Google Scholar
  33. 33.
    Delgenes, J. P., Moletta, R., and Navarro, J. M. (1988),Biotechnol. Lett. 10, 725–730.CrossRefGoogle Scholar
  34. 34.
    Jeffries, T. W. and Sreenath, H. K. (1988),Biotechnol. Bioeng. 31, 502–506.CrossRefGoogle Scholar
  35. 35.
    van Zyl, C., Prior, B. A., and du Preez, J. C. (1988),Appl. Biochem. Biotech. 17, 357–369.CrossRefGoogle Scholar
  36. 36.
    Onishi, H. and Suzuki, T. (1966),Agr. Biol. Chem. 30, 1139–1144.Google Scholar
  37. 37.
    Spencer, J. F. T. and Spencer, D. M. (1978),Economic Microbiology vol. 2, Primary Products of Metabolism, Rose, A. H., ed., Academic, New York, 393–425.Google Scholar
  38. 38.
    Spencer, J. F. T. (1968),Prog. Ind. Microbiol. 7, 1–42.Google Scholar
  39. 39.
    Gong, C., Chen, L. F., and Tsao, G. T. (1981),Biotechnol. Lett. 3, 130–135.Google Scholar
  40. 40.
    Tokuoka, K. (1993),J. Appl. Bacteriol. 74, 101–110.Google Scholar
  41. 41.
    Horecker, B. L. (1962),Pentose Metabolism in Bacteria. Wiley, New York.Google Scholar
  42. 42.
    Kosaric, N., Wieczorek, A., Cosentino, G. P., Magee, R. J., and Prenosil, J. E. (1983), inBiotechnology, vol. 3, Rehm, H.-J. and Reed, G., eds, Dellweg, H., vol. 3 ed. Verlag Chemie, Weinheim, pp. 257–385.Google Scholar
  43. 43.
    Rawn, J. D. (1983),Biochemistry. Harper & Row, New York, 665.Google Scholar
  44. 44.
    Taylor, K. B., Beck, M. J., Huang, D. H., and Sakai, T. T. (1990),J. Ind. Microbiol 6, 29–41.CrossRefGoogle Scholar
  45. 45.
    Doelle, H. W. (1975),Bacterial Metabolism, 2nd ed., Academic, New York, pp. 208–311.Google Scholar
  46. 46.
    Mortlock, R. P. and Wood, W. A. (1964),J. Bacteriol. 88, 845–849.Google Scholar
  47. 47.
    Shamanna, D. K. and Sanderson, K. E. (1979),J. Bacteriol. 139, 64–70.Google Scholar
  48. 48.
    Chaing, C. and Knight, S. G. (1959),Biochim. Biophys. Acta 35, 454–463.CrossRefGoogle Scholar
  49. 49.
    Chaing, C. and Knight, S. G. (1960),Nature 188, 79–81.CrossRefGoogle Scholar
  50. 50.
    Chaing, C. and Knight, S. G. (1961),Biochim. Biophys. Acta 46, 271–278.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • James D. McMillan
    • 1
  • Brian L. Boynton
    • 1
  1. 1.Alternative Fuels DivisionNational Renewable Energy LaboratoryGolden

Personalised recommendations