Applied Biochemistry and Biotechnology

, Volume 45, Issue 1, pp 407–415

Evaluation of the enzymatic susceptibility of cellulosic substrates using specific hydrolysis rates and enzyme adsorption

  • Dora Lee
  • Alex H. C. Yu
  • Ken K. Y. Wong
  • John N. Saddler
Session 2 Applied Biological Research

Abstract

Adsorption of cellulases to cellulose is a critical step in the hydrolysis of cellulosic substrates. However, the importance of adsorption in determining the hydrolysis rate is unclear. The accessibility to cellulases and specific hydrolysis rates were measured for various substrates. No correlation was found between the amount of enzyme adsorbed and the initial hydrolysis rate for different substrates. Specific hydrolysis rates were found to differ among substrates. Furthermore, both accessibility to cellulases and the specific hydrolysis rate of substrates were found to be changed by chemical and physical pretreatment of the substrate.

Index Entries

Cellulase specific hydrolysis rate adsorption cellulosic substrates cellulose hydrolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fan, L. T., Lee, Y.-H., and Beardmore, D. H. (1980),Biotechnol. Bioeng. 22, 177–199.CrossRefGoogle Scholar
  2. 2.
    Puri, V. P. (1984),Biotechnol. Bioeng. 26, 1219–1222.CrossRefGoogle Scholar
  3. 3.
    Sasaki, T., Tanaka, T., Nanbu, N., Sato, Y., and Kainuma, K. (1979),Biotechnol. Bioeng. 21, 1031–1042.CrossRefGoogle Scholar
  4. 4.
    Gharpuray, M. M., Lee, Y.-H., and Fan, L. T. (1983),Biotechnol. Bioeng. 25, 157–172.CrossRefGoogle Scholar
  5. 5.
    Grethlein, H. E. (1985),Bio/Technology 3, 155–160.CrossRefGoogle Scholar
  6. 6.
    Grous, W. R., Converse, A. O., and Grethlein, H. E. (1986),Enzyme Microb. Technol. 8, 274–280.CrossRefGoogle Scholar
  7. 7.
    Sinitsyn, A. P., Gusakov, A. V., and Vlasenko, E. Y. (1991),Appl. Biochem. Biotechnol. 30, 43–59.CrossRefGoogle Scholar
  8. 8.
    Stone, J. E., Scallan, A. M., Donefer, E., and Ahlgren, E. (1969),Adv. Chem. Ser. 95, 219–241.CrossRefGoogle Scholar
  9. 9.
    Thompson, D. N., Chen, H. C., and Grethlein, H. E. (1992),Bioresource Technol. 39, 155–163.CrossRefGoogle Scholar
  10. 10.
    Wong, K. K. Y., Deverell, K. F., Mackie, K. L., Clark, T. A., and Donaldson, L. A. (1988),Biotechnol. Bioeng. 31, 447–456.CrossRefGoogle Scholar
  11. 11.
    Lee, Y.-H. and Fan, L. T. (1983),Biotechnol. Bioeng. 25, 939–966.CrossRefGoogle Scholar
  12. 12.
    Converse, A. O., Ooshima, H., and Burns, D. S. (1990),Appl. Biochem. Biotechnol. 24/25, 67–73.CrossRefGoogle Scholar
  13. 13.
    Wald, S., Wilke, C. R., and Blanch, H. W. (1984),Biotechnol. Bioeng. 26, 221–230.CrossRefGoogle Scholar
  14. 14.
    Walseth, C. S. (1952),TAPPI 35(5), 228,229.Google Scholar
  15. 15.
    Saddler, J. N., Mes-Hartree, M., Yu, E. K. C., and Brownell, H. H. (1983),Biotechnol. Bioeng. Symp. 13, 225–238.Google Scholar
  16. 16.
    Gould, J. M. (1984),Biotechnol. Bioeng. 26, 46–52.CrossRefGoogle Scholar
  17. 17.
    Breuil, C., Chan, M., Gilbert, M., and Saddler, J. N. (1992),Bioresource Technol. 39, 139–142.CrossRefGoogle Scholar
  18. 18.
    Iogen Corporation. Kinetic Study of Enzymatic Hydrolysis of Exploded Wood. DSS Contract No. 51SZ.23283-7-6031. Efficiency and Alternative Energy Technology Branch, Energy, Mines, and Resources Canada, Ottawa, Ontario. 1990.Google Scholar
  19. 19.
    Wang, S. S. and Converse, A. O. (1991),Appl. Biochem. Biotechnol. 34/35, 61–74.CrossRefGoogle Scholar
  20. 20.
    Ooshima, H., Kurakake, M., Kato, J., and Harano, Y. (1991),Appl. Biochem. Biotechnol. 31, 253–266.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • Dora Lee
    • 1
  • Alex H. C. Yu
    • 1
  • Ken K. Y. Wong
    • 1
  • John N. Saddler
    • 1
  1. 1.Forest Products Biotechnology, Faculty of ForestryUniversity of British ColumbiaCanada

Personalised recommendations