Applied Biochemistry and Biotechnology

, Volume 57, Issue 1, pp 895–904

Perchloroethylene utilization by methanogenic fed-batch cultures

Acclimation and degradation
  • Herve Garant
  • Lee R. Lynd
Session 5 Environmental Biotechnology


Anaerobic sludge granules from two different sources were maintained in serum bottles and fed at 3-d intervals in the presence of 0.2 ppm perchloroethylene (PCE). Following acclimation periods ranging from 48–79 d, PCE degradation was observed with 95% utilization in 3 d. Only granules amended with formate as a cosubstrate showed PCE-degrading activity, whereas those utilizing acetate, lactate, ethanol, and methanol remained PCE-inactive after 90 d. Both cosubstrate consumption and PCE degradation ceased when acetate replaced formate as the cosubstrate for formate-acclimated cultures. The total moles of chlorinated and nonchlorinated ethene moieties were found to remain constant over time, demonstrating conservation of mass. Trichloroethylene (TCE) andcis-1,2 dichloroethylene (cis-1,2 DCE) were identified as the major dechlorination end products. The absence of further dechlorination in the presence of a great excess of reducing equivalents (13,000 times that needed) supports the hypothesis that complete degradation of PCE to ethene is not solely dependent on excess reducing equivalents, but also requires the presence of an appropriate microbial consortium.

Index Entries

Perchloroethylene degradation biodegradation methanogenica acclimation bioremediation reductive dechlorination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Keil, S. L. (1977), Chlorocarbons—Hydrocarbons, inEncyclopedia of Chemical Technology. Wiley-Interscience, New York.Google Scholar
  2. 2.
    Fathepure, B. Z. and Boyd, S. A. (1988),Appl. Environ. Microbiol. 54 (12), 2976–2980.Google Scholar
  3. 3.
    Bagley, D. M. and Gossett, J. M. (1990),Appl. Environ. Microbiol. 56, 2511–2516.Google Scholar
  4. 4.
    DiStefano, T. D., Gossett, J. M., and Zinder, S. H. (1991),Appl. Environ. Microbiol. 57 (8), 2287–2292.Google Scholar
  5. 5.
    Kastner, M. (1991),Appl. Environ. Microbiol. 57 (7), 2039–2046.Google Scholar
  6. 6.
    Sewell, G. W. and Gibson, S. A. (1991),Environ. Sci. Technol. 25, 982–984.CrossRefGoogle Scholar
  7. 7.
    DeBruin, W. P., Kotterman, M. J. J., Posthumus, M. A., Schraa, G., and Zehnder, A. J. B. (1992),Appl. Environ. Microbiol. 58 (6), 1996–2000.Google Scholar
  8. 8.
    Narayanan, B., Suidan, M. T., Gelderloos, A. B., and Brenner, R. C. (1993),Water Res. 27 (1), 181–194.CrossRefGoogle Scholar
  9. 9.
    Fathepure, B. Z., Nengu, J. P., and Boyd, S. A. (1987),Appl. Environ. Microbiol. 53 (11), 2671–2674.Google Scholar
  10. 10.
    Gibson, S. A. and Sewell, G. W. (1992),Appl. Environ. Microbiol. 58 (4), 1392–1393.Google Scholar
  11. 11.
    Freedman, D. L. and Gossett, J. M. (1989),Appl. Environ. Microbiol. 55 (9), 2144–2151.Google Scholar
  12. 12.
    Guiot, S. R., Gorur, S. S., and Kennedy, K. J. (1988), Nutritional and Environmental Factors Contributing to Microbial Aggregation During Upflow Anaerobic Sludge Bed-Filter (UBF) Reactor Start-Up.Proceedings of the 5th International Symposium on Anaerobic Digestion, Bologna, Italy. Pergamon, New York.Google Scholar

Copyright information

© Humana Press Inc. 1996

Authors and Affiliations

  • Herve Garant
    • 1
  • Lee R. Lynd
    • 1
  1. 1.Thayer School of EngineeringDartmouth CollegeHanover

Personalised recommendations