Increased xylose reductase activity in the xylose-fermenting yeastPichia stipitis by overexpression ofXYL1

  • Kristine M. Dahn
  • Brian P. Davis
  • Paul E. Pittman
  • William R. Kenealy
  • Thomas W. Jeffries
Session 2 Applied Biological Research

Abstract

ThePichia stipitis xylose reductase gene (XYL1) was inserted into an autonomous plasmid thatP. stipitis maintains in multicopy. The plasmid pXOR with theXYL1 insert or a control plasmid pJM6 withoutXYL1 was introduced intoP. stipitis. When grown on xylose under aerobic conditions, the strain with pXOR had up to 1.8-fold higher xylose reductase (XOR) activity than the control strain. Oxygen limitation led to higher XOR activity in both experimental and control strains grown on xylose. However, the XOR activities of the two strains grown on xylose were similar under oxygen limitation. When grown on glucose under aerobic or oxygen-limited conditions, the experimental strain had XOR activity up to 10 times higher than that of the control strain. Ethanol production was not improved, but rather it decreased with the introduction of pXOR compared to the control, and this was attributed to nonspecific effects of the plasmid.

Index Entries

Pichia stipitis xylose reductase gene expression fermentation metabolism 

References

  1. 1.
    Toivola, A., Yarrow, D., van den Bosch, E., van Dijken, J. P., and Scheffers, W. A. (1984),Appl. Environ. Microbiol. 47, 1221–1223.Google Scholar
  2. 2.
    Chan, E.-C, Ueng, P. P., and Chen, L. (1986),Biotechnol. Lett. 8(4), 231–234.CrossRefGoogle Scholar
  3. 3.
    Ingram, L. O., Conway, T., Clark, D. P., Sewell, G. W., and Preston, J. F. (1987),Appl. Environ. Microbiol. 53, 2420–2425.Google Scholar
  4. 4.
    Sarthy, A. V., McConaughy, B. L., Lobo, Z., Sundstrum, J. A., Furlong, C. E. and Hall, B. D. (1987),Appl. Environ. Microbiol. 53(9), 1996–2000.Google Scholar
  5. 5.
    Deng, X. X. and Ho, N. W. Y. (1990),Appl. Biochem. Biotechnol. 24/25, 193–199.CrossRefGoogle Scholar
  6. 6.
    Amore, R., Kötter, P., Küster, C., Ciriacy, M., and Hollenberg, C. P. (1991),Gene 109, 89–97.CrossRefGoogle Scholar
  7. 7.
    Hallborn, J., Walfridsson, M., Airaksinen, U., Ojamo, H., Hahn-Hägerdal, B., Penttilä, M., and Keränen, S. (1991),Bio/Technology 9, 1090–1095.CrossRefGoogle Scholar
  8. 8.
    Ho, N. W. Y., Petros, D., and Deng, X. X. (1991),Appl. Biochem. Biotechnol. 28/29, 369–375.CrossRefGoogle Scholar
  9. 9.
    Ohta, K., Beall, D. S., Mejia, J. P., Shanmugam, K. T., and Ingram, L. O. (1991),Appl. Environ. Microbiol. 57, 893–900.Google Scholar
  10. 10.
    Takuma, S., Nakashima, N., Tantirungkij, M., Kinoshit, S., Okada, H., Seki, T., and Yoshida, T. (1991),Appl. Biochem. Biotechnol. 28/29, 327–340.CrossRefGoogle Scholar
  11. 11.
    Kötter, P. and Ciriacy, M. (1993),Appl. Microbiol Biotechnol. 38, 776–783.CrossRefGoogle Scholar
  12. 12.
    Tantirungkij, M., Nakashima, N., Seki, T., and Yoshida, T. (1993),J. Fermentation Bioeng. 75, 83–88.CrossRefGoogle Scholar
  13. 13.
    Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. (1995),Science 267, 240–243.CrossRefGoogle Scholar
  14. 14.
    Bruinenberg, P. M., de Bot, P. H. M., van Dijken, J. P., and Scheffers, W. A. (1984),Appl. Microbiol. Biotechnol. 19, 256–260.CrossRefGoogle Scholar
  15. 15.
    Alexander M. A. and Jeffries, T. W. (1989),Enzyme Microb. Technol. 12, 2–19.CrossRefGoogle Scholar
  16. 16.
    Grootjen, D. R.J., van der Lans, R. G. J. M., and Luyben, K. Ch. A. M. (1990),Enzyme Microb. Technol. 12, 20–22.CrossRefGoogle Scholar
  17. 17.
    Skoog, K. and Hahn-Hägerdal, B. (1990),Appl. Environ. Microbiol. 56, 3389–3394.Google Scholar
  18. 18.
    Alexander, M. A., Yang, V. W., and Jeffries, T. W. (1988),Appl. Microbiol. Biotechnol. 29, 282–288.Google Scholar
  19. 19.
    Lachke, A. H. and Jeffries, T. W. (1986),Enzyme Microb. Technol 8, 353–359.CrossRefGoogle Scholar
  20. 20.
    Webb, S. R. and Lee, H. (1990),Biotechnol. Adv. 8, 685–697.CrossRefGoogle Scholar
  21. 21.
    Boynton, B. L. and McMillan, J. D. (1994),Appl. Biochem. Biotechnol. 45/46, 509–514.CrossRefGoogle Scholar
  22. 22.
    du Preez, J. C., van Driessel, B., and Prior, B. A. (1989),Arch. Microbiol. 152, 143–147.CrossRefGoogle Scholar
  23. 23.
    Yang, V. W., Marks, J. A., Davis, B. P., and Jeffries, T. W. (1994),Appl. Environ. Microbiol. 60, 4245–4254.Google Scholar
  24. 24.
    Rose, M. D., Winston, F., and Hieter, P. (1990),Methods in Yeast Genetics: Laboratory Course Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  25. 25.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989),Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  26. 26.
    Chiang, C. and Knight, S. G. (1966),Methods Enzymol. 9, 188–193.CrossRefGoogle Scholar
  27. 27.
    Southern, E. M. (1975),J. Mol. Biol. 98, 503–517.CrossRefGoogle Scholar
  28. 28.
    Bailey, J. E., Da Silva, N. A., Peretti, S. W., Seo, J.-H., and Srienc, F. (1986),Ann. NY Acad. Sci. 469, 194–211.CrossRefGoogle Scholar
  29. 29.
    Seo, J.-H. and Bailey, J. E. (1985),Biotechnol. Bioeng. 27, 1668–1674.CrossRefGoogle Scholar
  30. 30.
    Schaaff, I., Heinisch, J., and Zimmermann, F. K. (1989),Yeast 5, 285–290.CrossRefGoogle Scholar
  31. 31.
    Ingram, L. O., Conway, T., Clark, D. P., Sewell, G. W., and Preston, J. F. (1987),Appl. Environ. Microbiol. 53, 2420–2425.Google Scholar

Copyright information

© Humana Press Inc. 1996

Authors and Affiliations

  • Kristine M. Dahn
    • 1
    • 2
  • Brian P. Davis
    • 2
    • 3
  • Paul E. Pittman
    • 1
  • William R. Kenealy
    • 4
  • Thomas W. Jeffries
    • 2
    • 3
  1. 1.Department of BiochemistryUniversity of WisconsinMadison
  2. 2.Institute for Microbial and Biochemical Technology, Forest Products LaboratoryUSDA Forest ServiceMadison
  3. 3.Department of BacteriologyUniversity of WisconsinMadison
  4. 4.J. Whittier Biologies Inc.Madison

Personalised recommendations